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Abstract 

The Continuous Automated Vault Inventory System (CA VIS™) is a system designed to 

continually monitor the status of special nuclear materials (SNM) at the Oak Ridge based 

Y-12 facility. CA VIS consists of an integrated package of low-cost sensors used to 

continuously monitor weight and radiation attributes of the stored items. The CA VIS 

system detects "changes-in-state" of the special nuclear material and generates an 

appropriate alarm. Unfortunately, the CA VIS system is susceptible to false alarms that 

do not coincide with the removal of special nuclear material. These false alarms may be 

due to the random stochastic nature of the measurements, due to failing components, or 

due to external sources in the vicinity of the facility. The response to a false alarm may 

be an inventory check, which entails the physical verification of the attributes of the 

SNM. Thus, it is desirable to limit this costly response. 

This thesis presents the development of a monitoring system for CA VIS to 

eliminate the costly responses caused by false alarms. The system merges advanced 

statistical algorithms, such as the sequential probability ratio test (SPRT), to extract 

features related to changes in the CA VIS sensors with an expert system that forms a 

hypothesis on the root cause of any anomaly. In addition, kernel-averaging techniques 

have been developed as a regional anomaly-monitoring module. This thesis presents the 

development of the expert system and the kernel-averaging techniques featured in the 

fault detection and isolation system. The implementation of these techniques will enable 

the monitoring of the CA VIS system and develop alternative hypothesis of the root cause 

IV 
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of spurious CA VIS alarms. These alternative hypotheses can be investigated prior to any 

inventory check, thus reducing cost and lessening radiation exposures. 
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1 Introduction 

This chapter contains an introduction to the CA VIS monitoring system, a Fault Detection 

and Isolation (FDI) system for the CA VIS system at the Y-12 National Security complex. 

The introduction includes a brief description of CA VIS, the faults CA VIS is subject too, 

and the proposed FDI system to detect and isolate CA VIS faults. The project has two 

major contributions: 1) the extraction of information rich features from CA VIS data and 

2) the mapping of those features to faults hypothesis through an expert system. This 

thesis focuses on the second contribution. Information concerning the CA VIS 

monitoring system feature extraction can be found in "The Sequential Probability Ratio 

Test (SPRT) in Feature Extraction and Expert Systems in Nuclear Material Management" 

[Harrison 04]. 

1.1 Objectives of the Present Study 

The objective of the present study is to develop a Fault Detection and Identification (FDI) 

system to monitor the Continuous Automated Vault Inventory System (CA VIS™). The 

Y-12 National Security Complex in Oak Ridge Tennessee currently houses the nations 

supply of weapons grade uranium. CA VIS is a security system in place at the Y-12 

National Security Complex that monitors this special nuclear material (SNM) to ensure 

its safe and secure storage. CA VIS is subject to several types of failures making it 

necessary to have a FDI system to monitor the CA VIS system as a whole. 

1 
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CA VIS is a system designed to continually monitor the status of SNM. CA VIS is an 

integrated package of low-cost sensors that monitor the weight and radiation attributes of 

SNM. The system functions by monitoring the SNM for "changes-in-state" and 

generates an appropriate alarm in the event of a change. 

CA VIS generated alarms may result in an inventory check of the SNM. An inventory 

check consists of measurements of the physical characteristics of the SNM to ensure none 

of the material has been removed. Inventory checks can be costly, time consuming and 

may expose workers to radiation. Thus, it is desirable to perform as few inventory 

checks as possible. To limit the number of inventory checks it is necessary to ensure that 

CA VIS will only alarm when tampering with the SNM has occurred. However, CA VIS 

is prone to generate alarms that do not coincide with the removal of SNM. Thus, a 

system that provides some validity to CA VIS generated alarms is desirable. The 

proposed CA VIS monitoring system will provide root cause analysis by monitoring the 

CA VIS system to ensure that generated alarms are not a result of some type of CA VIS 

failure. Henceforth, CA VIS alarms that coincide with the removal of SNM will be 

referred to as true alarms. All other CA VIS generated alarms, or alarms that do not 

coincide with the removal of SNM, will be referred to as false alarms. 

This thesis presents the development of a monitoring system for CA VIS, which 

eliminates the costly responses caused by false alarms. The system merges advanced 

statistical algorithms, such as the sequential probability ratio test (SPRT), to extract 

features related to changes in the CA VIS sensors with an expert system that forms a 

2 
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hypothesis on the root cause of any anomaly. In addition, kernel-averaging techniques 

have been developed as a regional anomaly-monitoring module. 

1.2 Problem Statement 

The CA VIS system is suspect to false alarms, which may not coincide with the removal 

of special nuclear material. Several factors can result in false radiation sensors alarms. 

First, the statistical nature of radioactive decay and counting may cause the count rate to 

fall outside of the commonly used 95% confidence intervals. In such an instance, the 

state of the SNM has not changed and the CA VIS system incorrectly alarms. Secondly, 

the CA VIS system is comprised of numerous components that may fail over time. Thus, 

the CA VIS system may generate alarms due to component failures, which are not 

correlated with changes in the SNM. Thirdly, the storage area is a functioning warehouse 

that may have radioactive material being moved. These external radiation sources may 

be detected by the CA VIS system causing an alarm in the region of the warehouse where 

the external radiation source is located. Fourthly, the radiation sensors used in the 

CA VIS system display a spike behavior when they are impacted. Forklifts and other 

heavy equipment moving in the warehouse may cause impacts that are transmitted to the 

CA VIS storage vaults inducing spikes in the count rates. Finally, the CA VIS system has 

displayed a dependence on environmental stimuli such as heat and humidity. Thus, the 

environmental conditions of the storage area may cause the CA VIS system to generate 

false alarms. These numerous conditions can all result in CA VIS false alarms that may 

result in unnecessary and costly inventory checks. 

3 
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1.3 Overview of the Methodology 

The CA VIS monitoring system is a proposed system that will monitor the CA VIS 

system. In effect, the CA VIS monitoring system is a system that monitors a monitoring 

system. The system extracts features related to changes in CA VIS using the sequential 

probability ratio test and several other modules. These extract features are then analyzed 

by an expert system that forms a hypothesis on the root cause of any anomaly. These 

alternative hypotheses can be investigated prior to an inventory check to avert 

unwarranted inventory checks. A Regional Anomaly Monitoring Module (RAMM) was 

also developed to detect external stimuli that may induce alarms in CA VIS. The RAMM 

utilizes kernel-averaging techniques to detect and isolate root causes of abnormality that 

affect regions of the CA VIS system. 

The SPRT is a statistical test developed by A. Wald in 1945 that is capable of 

monitoring statistical properties of a Gaussian distribution [Wald 1945]. The SPRT 

determines if an input data stream was generated by the expected, normal Gaussian 

distribution characterized by an expected mean and variance, or if there is a greater 

probability that the data stream comes from some faulted distribution characterized by a 

shifted mean and or altered variance. If the input comes from the faulted distribution, the 

SPRT will generate an appropriate alarm. This technique is capable of optimally 

monitoring two attributes of the radiation distribution: mean and variance, in contrast to 

previous techniques used in CA VIS [Bell], which only monitored the mean. By 

monitoring two attributes of the radiation distribution, the SPRT based system will be 

capable of identifying additional operational faults. 

4 
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An expert system is an intelligent computer program that uses knowledge and 

inference procedures to solve problems that may require significant human expertise 

[Feigenbaum 1982). An expert system is comprised of a rule base, a knowledge base, 

and an inference engine [Waterman 1986]. Knowledge or facts cause rules to "fire" 

which in tum cause additional facts to be hypothesized. The inference engine controls 

program execution. When presented information about the state of a system, the expert 

system is capable of emulating the diagnostic actions of an expert if the system has been 

programmed with the correct knowledge. Expert systems have been used for fault 

detection and isolation in several industries including nuclear power [Bhatnagar 1990, 

Khartabil 1991, Miller 1994]. 

Kernel smoothing is a non-parametric technique used to estimate the probability 

density function of a data set [Wand 1995). In this application the data are the radiation 

detector count rates observed at different locations in the storage facility. Kernels are 

used to smooth the discrete measurements resulting in an approximation of the 

underlying radiation field. The resulting distribution can be thought of as a weighted 

average of the data with the weights defined by the kernel function. Kernel smoothing is 

implemented to detect and identify regional radiation disturbances. Kernel smoothing is 

used to map the behavior of the sensors in close proximity to one another to form a 

neighborhood score. Certain known anomalies may affect a region of the storage facility 

and would induce an increase in the neighborhood scores for that region. The maximum 

of the neighborhood scores will occur close to the regional anomaly, enabling the 

location of the anomaly to be determined and its cause to be investigated. 

5 
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1.4 Organization of the Thesis 

The first chapter of this thesis presents the objectives of the study, the problem statement, 

and an overview of the methodology describing the proposed FDI system. Chapter 2 

contains a literature survey of an application of expert systems in fault detection and 

isolation in nuclear systems and an application of kernel smoothing in fault detection and 

isolation. Chapter 2 also contains a description of expert systems including the 

definition, theory, and a discussion of their deficiencies and a discussion of the method of 

kernel smoothing. Chapter 3 contains a description of the CA VIS system. This chapter 

describes the Y-12 National Security complex, the Highly Enriched Uranium Material 

Facility, the various components of CA VIS, and the known possible faults CA VIS can 

experience including a discussion of several environmental experiments performed on 

CA VIS. Chapter 4 discusses the methodology of the study, including the integration of 

the feature extraction module with the expert system and RAMM to form the FDI system. 

Chapter 5 presents the results of the CA VIS monitoring system including a discussion of 

the performance of the FDI system and the RAMM on fabricated data and data collected 

by the CA VIS system. Conclusions on the study, contributions of the study, and 

recommendations for the future work on the system are given in chapter 6. 

The CA VIS system at the Y-12 National Security complex is a security system 

that monitors the status of SNM by detecting "changes in state" of the SNM. The system 

is susceptible to false alarms, the response to which can be costly and time consuming. 

The proposed CA VIS monitoring system is capable of distinguishing between true alarms 

6 
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and the false alarms. The following chapters of this thesis describe the CA VIS 

monitoring system. 
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2 Literature Survey of Expert Systems and Kernel Smoothing 

This chapter contains a literature survey of expert systems and kernel smoothing that 

includes a discussion of the theory and method of expert systems and kernel smoothing. 

Applications of expert systems and kernel smoothing in fault detection and isolation 

systems are also discussed. 

2.1 Expert Systems 

Expert systems are one of the most successful and widespread divisions of artificial 

intelligence or the study of computer programs that exhibit intelligent behavior. An 

expert system is an intelligent computer program that uses knowledge and inference 

procedures to solve problems that may require significant human expertise [Feigenbaum 

1982] .  In general it is necessary to optimize expert systems to solve specific problems, as 

attempts to build general problem solving expert systems have not had much success 

[Giarratano 1994, Waterman 1986] . If optimized with the correct system knowledge, an 

expert system is capable of emulating the actions of an expert system operator when 

presented with information concerning the state of that system. 

An expert system is comprised of a rule base, a knowledge base, and an inference 

engine [Tsoukalas 1997]. The knowledge base contains facts or information about the 

state of the system. The rule base contains the knowledge domain of the expert, or a 

collection of rules concerning the system that an expert would use to diagnosis the 

system. A popular method of representing the knowledge domain of an expert in the rule 
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base is in the form of IF /THEN rules. Knowledge or facts contained in the knowledge 
base cause rules in the rule base to "fire" which in tum causes additional facts to be 
hypothesized which are further stored in the knowledge base. The continual "firing" of 
rules will allow the expert system to build an understanding of the systems problem until 
it is able to correctly diagnose the problem. The inference engine controls program 
execution by determining which rules are satisfied by the facts in the knowledge base, 
prioritizes the satisfied rules and executes the rules with the highest priority. This 
enables the inference engine to diagnose the problem affecting the system. Several 
introductory texts on expert systems are available. The presentation given here is similar 
to Giarratano [Giarratano 1 986] and Waterman [Waterman 1 986] . 

Expert systems can also contain Explanation and Knowledge Acquisition modules 
[Giarratano 1986]. The Explanation module explains the reasoning the Expert system 
used to arrive at its decision. The Knowledge Acquisition module enables a user to add 
additional rules to the rule base of the expert system without having to explicitly code the 
rules. This is useful as additional information concerning the expert system problem may 
become available, or the knowledge engineering may have not covered all possible 
scenarios. A Graphical User Interface allows the Expert system to communicate with the 
user [Giarratano 1 986] . Figure 2. 1 illustrates the various components and the process of 
data flow in a typical Expert system. 
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Figure 2.1. Structure of Rule-Based Expert System 

2.1.1 Knowledge Engineering and Representation 

In order to emulate the actions of an expert, an expert system must be programmed with 
significant knowledge of the problem it is to solve, and the course of actions an expert 
would take when presented with the problem. The gathering and programming of this 
knowledge is known as knowledge engineering. The knowledge engineer extracts 
strategies and rules of thumb for problem solving from the human expert and uses this 
knowledge to build the expert system [Waterman 1 986] . For the expert system to be 
successful, it is necessary for the knowledge domain (the domain of information extract 
from experts) to span the entire problem domain (specific to the current problem area). 
An expert system containing knowledge of medicine would be ineffective at solving 
problem in engineering, and vice versa. Thus, the proper knowledge must be 
programmed into the knowledge domain of the expert system. In contrast, it is necessary 
to only program knowledge into the knowledge domain that is necessary to solve the 
specific problem. As previously mentioned, early attempts to produce systems capable of 
10 
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solving large classes of problems, or general problem solvers, were unsuccessful 

[Giarratano 1 994, Waterman 1 986). As the number of classes of problems a system 

could solve increased, the poorer the system preformed on each individual problem 

[Waterman 1 986). This is because the number of rules involved in the knowledge 

domain became very large and it became increasing difficult for the system to distinguish 

between the rules and solve the problem. Thus, it is necessary for an expert system to be 

problem specific. The later development of Fuzzy Logic by Zadeh [Zadeh 1 965] 

extended the applicability of expert system rule-base by allowing greater flexibility in the 

formation of the rules [Tsoukalas 1 997]; however it is still necessary for an expert system 

to be problem specific. 

Expert system development spawned from several disciplines of artificial 

intelligence. One such area is known as cognitive science and focuses on the method that 

human's process information or how humans think. This is important to expert systems 

because they attempt to emulate the actions of a human expert. Newell and Simon were 

able to demonstrate that human cognition can be expressed by IF/THEN rules [Newell 

1 972]. A simple example of human knowledge being expressed in IF/THEN rules is IF 

the car will not start THEN check the gas. Of course there are thousands of reasons why 

a car may not start but without any other operatory knowledge of the car the first reaction 

to a car not starting is to ensure that the vehicle has adequate fuel. Additional 

combinations of IF /THEN rules can be used to diagnose the more complicated failures 

that can occur in an automobile. Depending on the complexity of the problem the 

number of IF /THEN rules featured in an expert system can be hundreds or thousands. As 
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previously mentioned, the portion of the expert system that contains the knowledge 

concerning the problem is known as the knowledge base. The knowledge base of an 

expert system contains both factual and heuristic knowledge, which can be expressed in 

the form of IF/THEN rules. Factual knowledge is the widely excepted and understood 

knowledge concerning the problem domain and contains the underlying principals of the 

problem domain [Engelmore 1993) .  Heuristic knowledge is the knowledge of the 

instinct or gut feeling an expert in the field of the problem domain [Engelmore 1 993). 

This includes the judgments an expert in the problem domain would use to make a 

decision when presented with various situations in the problem domain. Heuristic 

knowledge contains the experiences an expert in the field has had while working in the 

field. 

Expert systems responsible for diagnosing large complex systems may feature 

hundreds or thousands of rules. In these large systems it is possible for several rules in 

the rule base to be satisfied by the conditions in the knowledge base. Thus, it is 

necessary for expert system to be able to determine which rule should be executed by the 

current state of the system and in some cases, choose between multiple rules that could be 

executed. As previously mentioned, the inference engine determines which rules are 

satisfied by the knowledge base and determines the order of execution of the rules by 

prioritizing the rules in order to form an inference or make a diagnosis about the state of a 

system. Returning to the automobile example, suppose the car will not start and the 

engine will not turn over. An expert system attempting to diagnosis this problem may 

have a rule base featuring two rules that state I )  IF the car will not start THEN check the 
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gas, and 2) IF the car will not start AND the engine does not tum over THEN check the 

battery. The antecedent for both rules is satisfied however, if the engine does not tum 

over the failure is probably not an empty gas tank. In this instance, the Expert systems 

inference engine would prioritize the satisfied rules and suggest checking the cars battery 

first. 

The inference engine is able to determine which rules in the rule base to execute 

using the problem-solving paradigm to organize the problem and determine the order the 

problem should be solved [Giarratano 1994]. This often involves chaining the IF/THEN 

rules to form an order or line of reasoning. Problems can be forward or backwards 

chained depending on the desired direction of the problem solving [Giarratano 1994]. 

Forward chaining begins with a set of conditions and moves towards some conclusion 

using the IF /THEN rules contained in the knowledge base. Backwards chaining begins 

with the desired conclusion and reasons backwards to the conditions necessary for that 

conclusion to occur. By programming the rule base knowledge in the structure of 

multiple IF /THEN rules and following a line of reason to the desired goal, expert systems 

are able to infer the action an expert would take when presented with the necessary 

information concerning the state of the system. 

2.1.2 Expert System Uncertainty 

When experts solve problems, they have an idea of how confident they are in their 

solution. The uncertainty that experts have in their solution can be due to inadequate 

information concerning the problem and uncertainty in the accuracy of the rules and 

13 



www.manaraa.com

principals they used in determining their solution. Calculating an uncertainty for the 

conclusion of an expert system can be a difficult task. This is in part because it is 

difficult to assign an uncertainty to the IF/THEN rules contained in the knowledge base. 

One method of assigning uncertainty to an expert system is to use fuzzy logic and make 

the expert system a fuzzy system [Engelmore 1993]. Fuzzy logic is a problem solving 

method that uses fuzzy numbers that can be expressed in linguistic terms to address the 

imprecision of the inputs and output of the system variables [Tsoukalas 1997]. In a fuzzy 

system, each IF /THEN rule has a degree of fulfillment, or the degree to which the rule is 

satisfied. An uncertainty in the expert system conclusion can be calculated using the 

degree of fulfillment of each rule used by the expert system to arrive at the conclusion. 

Fuzzy logic can also be useful in expert systems with extremely large knowledge bases. 

In crisp or non-fuzzy systems, when the knowledge base becomes increasingly large, the 

inference engine can have an increasing difficult time determining which knowledge to 

use to arrive at the appropriate conclusion. Fuzzy logic can be used to remedy this issue 

[Tsoukalas 1997]. 

2.1.3 Expert System Deficiencies 

Expert systems have been proven successful at diagnosing specific problems but some 

deficiencies in their ability still exist. These deficiencies are mainly attributed to the 

knowledge base of the expert system, or strictly their inability to infer from the 

knowledge base, and to actually understand the knowledge contained in the knowledge 

base. Expert systems are incapable of a complete understanding of the knowledge base 
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and this can often cause their diagnosis to suffer [Luger 2002]. For example, MYCIN 

[Shortliffe 1 976] one of the first expert systems was a medical application used to select 

the antimicrobial therapy for patient and contains no knowledge of physiology. The 

expert system only contains the knowledge necessary to select the antimicrobial therapy 

for a patient. MYCIN selects a treatment by analyzing patient records, and lab results 

and then asks the user a series of question to narrow in on the correct treatment. A myth 

concerning the system states that MYCIN actually asked if the patient was pregnant even 

after being told the patient was a male [Luger 2002]. Regardless of whether or not the 

myth is true, the example illustrates the inability of the expert system to have a profound 

understanding of the knowledge contained in its knowledge base. This lack of profound 

understanding results in the expert system having an inability to provide a profound 

explanation of its arrived decision. The explanation module is really just the expert 

system asserting which antecedents were satisfied in the knowledge base. Thus, the lack 

of a profound understanding of its knowledge base leads to several deficiencies in expert 

systems. 

In addition to a lack of profound understanding of its knowledge base, expert 

systems are incapable of inferring outside of their knowledge base. Thus, expert systems 

"lack robustness and flexibility" [Luger 2002]. When presented with a problem they 

cannot solve, expert systems are incapable of going and searching for more knowledge on 

the subject or reasoning the problem out from deeper principles than define the problem. 

This inability of an expert system to learn or search out new knowledge is also a 

deficiency [Luger 2002]. In general, once the expert system is programmed and 
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complete, the knowledge base will not extend itself. Some expert systems are 

programmed with knowledge acquisition modules; however, this is not the system 

learning on its own, but rather additional knowledge being programming into the expert 

system. Finally, and perhaps the most serious deficiency for this particular application is 

the difficulty in verifying the decision, or providing a confidence in the decision [Luger 

2002] .  The expert system is only as accurate as its knowledge base, and it is difficult to 

quantify the accuracy of the knowledge base. Where many techniques may have a 99% 

confidence in their result, it is difficult to give a confidence in the result of an expert 

system. 

Despite these deficiencies, expert systems have enjoyed great success when 

applied to a specific problem. Expert systems have numerous applications in geology, 

medicine, engineering, and military science, among many others. With the adaptation of 

representing human knowledge as IF /THEN rules, expert systems have evolved from 

unsuccessful systems that attempted to be general problem solvers, to extremely 

successful problem specific systems. The following section describes the application of 

an expert system. 

2.2 Expert Systems Applications 

AI scientists have attempted to build computer programs capable of exhibiting intelligent 

behavior since the 1 950s. These early attempts focused on building general problem 

solver that were capable of solving large classes of problems. These attempts were 

generally unsuccessful, however some significant result did come from this work such as 
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Newell and Simons demonstration that human cognition could be represented by 

IF/THEN type production rules. This work paved the way for the rise ofknowledge­

based systems that were problem specific rather than general problem solvers. Early 

expert system such as DENDRAL [Linsay 1980], MYCIN [Shortliffe 1 976] , and 

PROSPECTOR [Duba 1979) are all examples of problem specific expert systems that 

were successful in particular fields. In 1965, work began on DENDRAL, a system that 

identifies the molecular structure of a compound. The system uses knowledge of 

chemical expertise on mass spectrometry and nuclear magnetic response data to identify 

the unknown compound from a database of molecular structures of all compounds 

[Linsay 1 980]. 

MYCIN is an expert system used in medicine to select the antimicrobial therapy for 

patient with viral infections ofbacteremia, meningitis, and cystitis [Shortliffe 1 976). 

MYCIN functions by first diagnosing the infection using laboratory results, patient 

history, and the patients symptoms and then selects the appropriate treatment by 

mimicking treatments previously administered by experience physicians. MYCIN was 

the first expert system to separate the knowledge base and the inference engine. This 

enabled the core of MYCIN, known as the shell, to be reused in another expert system 

with a different knowledge base. 

PROSPECTOR is an expert system used in geology to determine the likelihood of 

mineral and ore deposits in a region based on samples from the region [Duba 1979] .  

PROSPECTOR functioned by analyzing characteristics of the region such as the geologic 

setting, structural settings, and the type of rocks and minerals discovered from samples 
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from the region. Using this information PROSPECTOR infers the likelihood of 

discovering deposits of certain ores by comparing and contrasting the site with previously 

developed models. PROSPECTOR is a large system containing over 1 000 rules. These 

early problem specific knowledge based systems demonstrated that expert systems could 

be successfully used to solve real world practical problems and paved the way for the 

application of expert systems in other areas. 

Today expert systems have application in multiple disciplines including chemistry, 

medicine, and geology as well as agriculture (PLANT/ds), computer systems (XCON), 

law (EXPERT AX), engineering (REACTOR), and military science (EPES). Expert 

systems have also been used for fault detection and isolation in several industries 

including nuclear power. The following review discusses an application of an expert 

system to a nuclear application. 

2.2.1 Operator Advisors 

Expert systems have been develop to aid nuclear power plant operators by continually 

monitoring plant parameters and when an abnormality is detected, diagnoses the plant 

using a hierarchical classification scheme that are known as operator advisors (OAs). 

The OAs have been developed for use on simulators of the Perry Nuclear Power Plant, 

and a simulator of the K reactor at the Savannah River Site as simulators enable testing of 

hypothetical accident scenarios that can be difficult to test and rarely seen in normal 

operating conditions [Miller, etc. 1 994]. 
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The OAs discussed here feature three modules; data management, monitoring, 

and diagnosis, with a fourth module, procedure management, still under development. 

The data management module performs several tasks including reading the data from a 

serial port, storing the data in a database that must be easily accessible for later use, and 

providing data to the other module in the OA when it is requested. The data management 

module data is organized in relational databases, which enables convenient storage and 

retrieval of data and trends in the data by the other modules. The monitoring module 

inspects the status of the plant by detecting changes in values of plant data under normal 

operating condition. Current plant data values are compared to baseline values that were 

established when the OA was initialized. If some value or values deviate from the 

baseline value by some threshold amount the monitoring module determines that some 

abnormal condition exists. If an abnormal condition exists the diagnostic module is 

initialized. The diagnostic module purpose is to isolate the specific component failure or 

plant automated action that resulted in the abnormal condition. For every component 

failure that can occur there exist an expected pattern of plant parameter changes that are 

characteristic of the component failure. Diagnosis of component failures requires 

matching the observed abnormal conditions with a known pattern of plant values that are 

characteristic of some specific component failure. 

Nuclear power plants contain thousands of components that are subject to failure, 

thus it is necessary to reduce the search space to a manageable size in order to isolate the 

failed component. Organizing the plant into a hierarchy of systems and component 

reduces the search space. Diagnosis is performed by identifying the system, subsystem, 
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component, and subcomponent that have failed until the specific component failure is 

isolated. Top systems are evaluated first. If a failure is found, the lower level systems 

that correspond to the top system are evaluated. If a failure is not found, the lower level 

systems are not evaluated. This process continues until the faulted component is isolated. 

Systems unrelated to the failure are not evaluated thus reducing the search space. The 

OA determines if a system is faulted using; 1) the status of systems which support the 

system, 2) the status of inputs to the system, 3) the presence of signals which initiate 

some automatic action by the system, and 4) the system output. This hierarchy diagnosis 

method is known as system based decomposition utilizing a search strategy of 

classification known as establish-refine. Hierarchical classification has several 

advantages, namely that highly compiled knowledge is easily encoded in structure 

programming constructs, and the search space can be easily reduced. 

It is important to note that this method of organization of the knowledge base does 

not insure the correct diagnose of all abnormalities related to the system by the expert 

system. This is because it is difficult to conceive all possible interactions between 

systems for every possible scenario. For this reason the OA features a knowledge 

acquisition module. Additional knowledge is added to the OA by following a set of step 

where the user 1) chooses a scenario of interest to add, 2) identifies all plant systems 

associated with the scenario, 3) develops the proper hierarchical decomposition for the 

systems related to the scenario, 4) incorporates this scenario specific knowledge 

including the hierarchical decomposition into the expert system and 5) tests the expert 

systems response on the scenario. 
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The expert system was applied to a multiple mode Residual Heat Remover (RHR) 

in a Boiling Water Reactor (BWR) to diagnose and manage operations and procedures. 

The RHR system is an eight-mode system that is used to remove heat from the core under 

normal shutdown conditions, maintain desired pool temperature, and to maintain desired 

reactor water level under abnormal conditions by condensing reactor steam. The original 

design of the OA was unable to distinguish between transients caused by operator actions 

such as a change in power level, and faults in the actual system. To account for this 

deficiency, the system was modified so that transients were qualified as system 

abnormalities or changes caused by normal operator actions such that the RHR system is 

in a steady state, a transient state (changing from one mode to another), or an abnormal 

state. When the OAs monitoring module detects a change in the operating conditions of 

the RHR the OA uses a routine to check if the abnormality is caused by operator action or 

if the system is indeed in an abnormal state. If the routine determines the system is in an 

abnormal state the diagnostic module is initiated, else the OA initiates another module to 

assist the operator in whatever action is being executed. 

Due to the multi-modal aspect of the RHR, it can be difficult to use classification­

based decomposition to diagnose the system. This is because it is necessary to construct 

a different diagnostic hierarchy for each mode, or build one diagnostic hierarchy with a 

knowledge base for each mode. This can be remedied by using a functional base 

decomposition to decompose the system hierarchy. Functional decomposition operates 

by denoting top hypotheses that specify failures and faults in the system. The hierarchy 

is based on system malfunction and the function of the subsistent of the systems 
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containing the abnormalities related to the malfunction. The top of the hierarchy states 

the function of the system being diagnosed, in this case the RHR. The lower level states 

the major functions that are necessary to perform the function of the higher levels until 

the hierarchy ends with the function of independent components. This system is 

diagnosed to determine if it is performing its function for the indicated mode. This is 

achieved by diagnosing the input and output conditions of the system. If some fault is 

detected, the expert system systematically moves down the malfunction hierarchy testing 

the status of each component it encounters until the failed component is isolated. The 

functional decomposition approaches is advantageous as the functionality of the 

components of nuclear power plants is well defined which provides consistent 

malfunction hypotheses. Also, the multiple modes of the RHR system can be diagnosed 

using this method of hierarchical decomposition. 

The expert system was applied to a heavy water reactor to detect and diagnoses 

root causes of deviations from normality in the reactors process water loop including 

leaks. The applied system uses a diagnostic knowledge base that features a hybrid of the 

system-based decomposition and the functional based decomposition. This organization 

of the knowledge base was used because a set of specific malfunctions was chosen and 

experts in diagnosing these malfunctions were available [Miller 1994]. The heavy water 

reactor that the expert system was applied to was a 2700 MW thermal reactor used to 

produce plutonium, tritium, and medical isotopes. Heat from the core is transferred to the 

process water loop that moderates and cools the core. Heat exchangers are then used to 

transfer the heat from the process water loop to the cooling water system that rejects the 
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heat into the environment. The process water loop's main function is to dissipate heat 

generated in the reactor by pumping heavy water (D20) from the reactor to heat 

exchangers where it is cooled. The system consists of a pump suction valve, a pump, a 

heat exchanger, and an outlet valve. 

The knowledge base for the expert system was acquired through written 

documents, and interviews with experts. This information was organized into a 

malfunction hypothesis hierarchy where the top nodes represent more general 

malfunction hypothesis and the lower nodes called tip nodes represent more specific 

malfunction hypothesis that correspond to a specific malfunction. The organization 

featured a hybrid of system and functional based decomposition where the choice 

between the decomposition is knowledge driven. The reason for choosing the hybrid 

representation was the goal of an expert system is to not only perform the task of an 

expert, but also mimic the manor in which the expert performs the task. The hybrid 

knowledge base was best able to obtain this goal. 

Here the decomposition of a process water system malfunction is discussed to 

demonstrate the use of functional and system base decomposition. The top node of this 

hierarchy is naturally a process water malfunction. The process water system can be 

decomposed into two major functions of process water containment and process water 

transport through the reactor and heat exchangers. Thus, lower node malfunctions are 

process water leak and process water flow malfunction. The children nodes of the 

process water flow malfunction use a system based decomposition to isolate the loop 

where the flow malfunction occurred. A functional based decomposition is then used to 
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classify the malfunction as a flow loss or valve malfunction in the faulted loop. This 

final classification leads to the isolation of the root cause of failure in the process water 

system. By using both types of decomposition the root cause of failure is identified in a 

manor similar to that an expert would use. 

This expert system has undergone several structural tests to ensure its 

functionality and accuracy in diagnosis. Testing of the knowledge base indicated that 

system could correctly detect and diagnose the complete set of process water 

malfunctions. 

The common factor in the article "Experience with the hierarchical method for 

diagnosis of faults in nuclear power plant systems" and the research present in this thesis 

is that both use an expert system for fault detection and isolation for a large complex 

system featuring a large number of components. Of course a nuclear power plant is 

immensely more complex than the CA VIS system, however, the systems are similar in 

that both feature multiple components that are subject to failure and these failures yield 

affects in other components in the system. Similar to the nuclear power plant the 

structure of the CA VIS system lends itself to decomposition into a hierarchy that an 

expert system can use to detect and isolate malfunctions and failures. Thus, a 

hierarchical method can be used by an expert system to detect and diagnosis faults and 

malfunctions in the CA VIS system similar to the method the expert system is used to 

diagnosis the nuclear power plant. 

The structure of the OA described in the article is similar to the expert system 

designed to monitor the CA VIS system. The OA from the article features four modules: 
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a data management module, a monitoring module, a diagnosis module, and a procedure 

module. The expert system designed to monitor the CA VIS system currently features 

three modules that perform similar tasks. The CA VIS monitoring expert system features 

a feature extraction module that acts as a custodian and interpreter for the data collected 

by the CA VIS system. This module is similar to the data management module in that it 

processes data from the CA VIS system and provides information pertinent to the other 

modules of the expert system. A difference between the CA VIS monitoring expert 

systems feature extraction module and the OA data management module is that the 

feature extraction module does not currently read or log data from the CA VIS system. 

However, to implement the CA VIS monitoring expert system this type of functionality 

would need to be added to the CA VIS monitoring expert system. The CA VIS monitoring 

system also features a module that monitors the features extracted by the feature 

extraction module to determine if some abnormality exists in the CA VIS system. 

Comparing the value of the extracted feature to some threshold value performs this 

monitoring. If some extracted feature value exceeds the threshold value for the feature 

the CA VIS system is considered in an abnormal state and the knowledge base module of 

the expert system is initialized. This module is extremely similar to the monitoring 

module of the OA. They practically serve identical roles in identical fashions. Finally, 

the CA VIS monitoring expert system features a module that attempts to isolate the source 

of abnormality in the CA VIS system detected by its monitoring module. This isolation is 

performed using a classification base system decomposition hierarchical scheme. This 

module is similar to the OAs diagnostic module except the OAs diagnostic module 
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features a functional based decomposition scheme as well as a system based 

decomposition scheme. The CA VIS monitoring expert system is similar to the 

application of OAs to diagnose nuclear power plant systems in that they both use a 

similar system architecture and method to detect and isolate faults in the systems they are 

designed to monitor. 

The main difficulties faced by the OA diagnosing the nuclear power plant were 

transient state of the power plant where operator actions induce changes in state of the 

plant variables rather than a malfunction or faulted component. Operator actions such as 

power reduction induce changes in state of system variables that the expert system has 

difficulty diagnosing. Introducing a classification of the state of the nuclear power plant 

and organizing the knowledge base in a functional decomposition overcame this 

difficulty. This type of difficulty should not be faced in the implementation of the 

CA VIS monitoring expert system, as no transient states exist in the CA VIS system. 

The method presented in this article is pertinent to this research in that it 

demonstrates a successful application of expert systems in fault detection and isolation 

nuclear system application. The architectures of both systems are very similar with both 

systems featuring basically the same modules. Also, both systems lend themselves well 

to a hierarchical decomposition that enable system base and for the OA function based 

decomposition of malfunctions and faulted components. The main difficulties faces by 

the OA are transient states that induce changes in state of the system variables. These 

difficulties were overcome by qualifying the mode of the system and organizing the 

knowledge base in a functional decomposition. The CA VIS monitoring system will not 
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face these difficulties, as there are no transient states or operations utilized in the CA VIS 

system. 

2.3 Kernel Smoothing 

This section contains a description of kernel smoothing and describes the method that it is 

implemented. Kernel smoothing is a non-parametric technique used to estimate the 

probability density function of a data set using a kernel density estimator. It can be 

thought of as a weighted average of the data with the weights defined by the kernel 

function, which measures a similarity between stored examples and new observations. 

Suppose data exists from a random sample such that X 1 , • • •  ,Xn taken from a continuous, 

univariate density f. The kernel-smoothing estimator j is simply the weighted average 

of each observation in the data set defined by equation 2.1 

Eq. 2 . 1 

where K h ( x, x; ) represents the kernel function that defines the weighted average with a 

kernel width h, n is the size of the data set, x is the contributing observation, and x; is the 

data point around which the kernel is placed. The kernel estimate value at the point x is 

the average of each of the n kernels ordinate at the point x. The kernels spread a 

probability density of size _!_ from each data point to its neighboring data points. 

Summing the contributions from each data point results in the kernel estimate of the 
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probability density of the data set. Thus, the kernel-smoothing estimator f is a 

representation of the underlying behavior of the data set [Wand 1995] . 

A kernel function is a multivariate function for XE Rd and has the following 

properties [Cherkassky, 1998]: 

1. Kh(x,x;) takes on a maximum value where x=x;. 

2. IKh(x,x;)I decreases with abslx-x;I. 

3. Kh(x,x;) is a general function of 2d variables 

4. Kh(x,x;) is a non-negative function 

5. Kh(x,x;) is a radially symmetric function 

Any function that meets these criteria can be used as a kernel function, thus there exist 

many types of kernel functions such as the top hat kernel function, the Epanechnikov 

kernel function, the triangular kernel function, and the commonly used Gaussian kernel 

function defined in equation 2.2. 

Eq. 2.2 

In equation 2.2, x; is the data point around which the kernel is placed, x is the 

contributing observation and h is a smoothing parameter or kernel width. The kernel 

width (h) dictates the spread of the Gaussian function and can be used as a regularization 

parameter. As the kernel width is increased, the system becomes more biased while its 

variance decreases, and vice versa. This means that as the kernel width is increased, 

more weight is given to the surrounding observations and the result is forced towards the 
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mean of the observations, thus the larger the kernel width the smoother the result. The 
optimal kernel width is problem specific and in many instances must be estimated. 
Figure 2.2 displays several Gaussian kernel functions with varying kernel widths. 

2.4 Kernel Smoothing Applications 

The following section contains a description of an application that uses kernel smoothing 
for fault detection. 

2.4.1 Kernel Smoothing for Fault Symptom Generation 

Several methods of fault diagnosis for systems have been developed and generally can be 
classified as model-based fault detection and model-free fault detection methods. The 
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Figure 2.2. Gaussian kernel functions with various kernel widths 
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utilization of model-based approaches to real life process may be somewhat restricted in 

that an accurate process model of the system, that may not be available, is required to 

produce realistic and reliable results. Model based fault detection approaches are also 

limited because they can generally only be applied to linear processes . If an accurate and 

reliable model is available, model based techniques are superior, however if a model is 

not available a non-model based technique may be more appropriate. Suggested by their 

name, model-free approaches do not require a model for fault symptom generation. 

These methods function by comparing the measured and desired values of the controlling 

variables in a system to determine the operating mode for the system. 

In the article "A note on nonparametric kernel smoothing for model-free fault 

symptom generation" [Fenu 1 999] , a kernel smoothing method is discussed for model 

free fault symptom generation for nonlinear systems. As previously discussed, kernel 

based smoothing is a statistical method used to smooth noisy or scattered data to 

determine the underlying probability density function of the data. Here a method of 

applying kernel smoothing for fault detection is proposed that employs the kernel 

bandwidth as a fault symptom. The basic method is when some fault occurs in the 

system, some correlated change will occur in the smoothness characteristics of the time 

behavior of the variable being smoothed. The change in the smoothness characteristics 

will be reflected in the features of the kernel smoother, namely the optimal kernel 

bandwidth. A change in the optimal kernel bandwidth may signify a fault in the system. 
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Thus, the optimal kernel bandwidth can be interpreted as a fault symptom, which can be 

monitored for fault detection. 

Consider some single input single output nonlinear discrete time closed-loop plant 

system such that 

xr=1 = 
f(x, , r, , t), 

y, = h(x, , t) 

where x1 E 9tn represents the state vector, y1 E 9t denotes the output measurement vector, 

and r, E 9t is the set-point input. Also consider the sampling of some unknown 

continuous random variable y(t) from the system over some finite time interval [t-T,t] . 

The density of the variable can be determined using the kernel-smoothing estimator J .  

As previously discussed, the kernel bandwidth h plays a role in the kernel smoothing 

result and can be used in fault symptom generation. Several criteria can be used to 

determine the optimal kernel bandwidth one such being a minimization of an average 

cost function such that 

h,0 = arg min f' E[y(t )-](t )]2 dt 
h, J,-r 

where E[ x ]2 is the square of the expectation. Assuming that the kernel estimator J is 

twice continuously differentiable and that the error in the estimate is a white random 

process with constant variance a2-, then it is possible to obtain the optimal kernel 

bandwidth such that 
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where ck = f K 2 (x)dx is the integral over the square of kernel function K(x), 

d; = f x 2 K(x)dx is the second moment of the kernel function K(x), }" (x) denot.es the 

second derivative of the scalar function /0 , and n is the number of samples of y(t) over 

the time interval [t-T,t] .  

The technique developed in the article is able to use the kernel bandwidth as a 

fault symptom because the kernel smoothing provides a smooth estimate of the density of 

the unknown variable y(t). The optimal kernel smoothing bandwidth h1° is a 

regularization parameter and dictates the smoothness of the kernel smooth estimator f . 

Any change in the system will be reflected in a change in the optimal kernel bandwidth 

h1° . Thus, the time behavior of the optimal kernel bandwidth can be used as a fault 

symptom making the kernel smoother a change detector that can be used to correlate a 

fault symptom with the current set point vector and any other available variables. It is 

important to note that the equation for the optimal kernel bandwidth h1° is difficult to 

apply in practice because its calculation involves complex unknowns that must be 

estimated from the data. A good approximation of the optimal kernel bandwidth can be 

determined using the leave one out cross validation method. Leave one out cross 

validation partitions the data set into many training and testing sets in which one 

observation is left out and computes an average squared error over the various sets. 

Using this method it is possible to define the cross validation function that validates the 

ability to predict y(t) such that 
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1 r 
CV(h1 ) = - I, [y(t) - ](1)] 2 

T + 1 i=r _ r  

The estimation of the optimal kernel bandwidth is then given by the minimizing the 

average cost function of the cross validation function such that 

h,0 

= arg min CV(h1 ) 
h, 

This equation is an approximate estimation of the optimal kernel bandwidth and 

simulations have shown that approximation errors are negligible if the time interval T is 

not to small. 

The developed method was applied to a well-known FDI industrial actuator 

benchmark Blanke et al. The benchmark at Aalborg University in Denmark is based on 

an electro-mechanical test facility. The benchmarks actuator is a brushless synchronous 

DC motor connected by an arm and an epicyclic gear train to a rod. A similar motor is 

mounted in parallel to the rod that allows the desire external load torque to be simulated. 

Four sequences of data from a real-time monitoring of the process were analyzed by the 

kernel smoother with the size of the moving batch set at 150 milli-seconds. The four 

sequences were no load disturbance, a position measurement fault, a load step 

disturbance, and a current fault. During the no load disturbance sequence the actuator is 

operating without an external load torque being applied by the motor. The position 

measurement fault sequence simulates a malfunction of the position measurement of the 

motors power drive. The current fault simulates a malfunction that results in the power 

drive being able to only deliver positive current. The load step disturbance simulates an 

external torque load applied to the actuator. The developed method was able to 
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successfully diagnose the faulted sequences in the process as the position and current 

faults resulted in significant changes in the kernel bandwidth, while the kernel bandwidth 

remained unaffected by the load disturbance. Thus, the optimal kernel bandwidth was 

successfully used as a fault symptom in this nonlinear system and the kernel smooth 

estimator could be used as a fault generator by monitoring the smoothness characteristics 

of the time behavior of the measured variables. 

The common factor in the article on nonparametric kernel smoothing for model­

free fault symptom generation and the research present in this thesis is that both use 

kernel-smoothing techniques to monitor a system for a faulted state. The method 

presented in the article monitors the parameters of the kernel smoothing for changes that 

signify some fault state of the system. Here the optimal kernel bandwidth is calculated 

for each setpoint and monitored for changes in order to generate faults. This research 

implements kernel smoothing to detect and identify regional radiation disturbances 

caused by regional anomalies in the CA VIS system. Here the actual kernel smoother 

estimator J is monitored for an abrupt change, as the probability function of the CA VIS 

sensor being monitored by the kernel smoother should center about a mean value of zero 

given no abnormalities in the CA VIS system. 

The method presented in this article is pertinent to this research in that it demonstrates 

a successful application of kernel smoothing in a fault detection application. While the 

two applications do not monitor a common fault symptom both are based on similar 

reasoning that fault detection is possible by monitoring the smoothness characteristics of 

the systems they are assessing. A problem encountered in the method presented in the 
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article is the calculation of the optimal kernel bandwidth. This is because the calculation 

of the optimal kernel bandwidth involves complex unknowns that must be estimated from 

the data. This problem was remedied by estimating the optimal kernel bandwidth using a 

leave one out cross validation method. A similar problem exists in this research in that it 

is difficult to choose an optimal kernel bandwidth for the kernel smoothing. This is 

because the kernel bandwidth is dependent on the physical distance between the sensors 

in the CA VIS system. The physical distance can be difficult to estimate, as the CA VIS 

storage area is a functional area where the equipment is frequently being moved. Thus, 

the optimal kernel bandwidth will have to be determined empirically when implemented 

at the Y-12 site. 
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3 Y-12 National Security Complex and CA VIS Background 

This chapter contains a description of the Y-12 National Security Complex, and the 

equipment and proposed facility for the storage and monitoring of the SNM. This 

includes a discussion of the Highly Enriched Uranium Material Facility (HEUMF) and 

the Continuous Automated Vault Inventory System (CA VIS™). 

3.1 Y-12 National Security Complex 

The Y-12 National Security complex, shown in figure 3.1, is an 811-acre facility in Oak 

Ridge Tennessee built in 1943. Part of the Manhattan Project, the original mission of the 

Y-12 facility was to process uranium for the first atomic bomb [Yesterday at the Y-12 

National Security Complex] . Since the end of World War II, the mission ofY-12 has 

changed to including the manufacturing and remanufacturing of unique nuclear weapon 

components, the dismantling, storage and evaluation of returned weapons, and the storage 

and management of enriched uranium material known as special nuclear material (SNM) 

[Defense Programs at Y-12] . 

As nuclear weapons are retired from the national stockpile or returned for 

dismantlement under strategic arms reduction treaties, the size of the nations stockpile of 

weapons grade uranium will increase. The safe, secure, & reliable storage of this 

material is essential to national security. The Y-12 National Security complex currently 

houses the nations supply of weapons grade uranium and construction is currently 
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Figure 3.1. Y-12 National Security Complex [Society for the Historical Preservation of 
the Manhattan Project 2004] 

underway on the Highly Enriched Uranium Material Facility (HEUMF) that will function 

as a modem storage facility for the SNM. 

3.2 Highly Enriched Uranium Material Facility (HEUMF) 

The Highly Enriched Uranium Material Facility (HEUMF) will act as the nations 

repository for highly enriched uranium (SNM) [Parson 2002] . Currently, there are five 

separate facilities at the Y-12 National Security complex where SNM is stored. Upon 

completion, the HEUMF will act as the single repository of the SNM [Parson 2002]. 

Construction began on the facility in 200 I and should be completed in 2005. A modem 
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monitoring system termed CA VIS will monitor the storage of the SNM in the HEUMF. 

Figure 3.2 is a picture of the proposed HEUMF. 

3.3 Continuous Automated Vault Inventory System (CA VIS) 

One of the missions of the Y-12 National Security complex is the storage of SNM. The 

Department of Energy (DOE) requires that the status of the SNM inventories be 

confirmed periodically [Younkin 1999]. The purposed of the inventory status is to ensure 

that the SNM is secure. One method is to continuously verify that the weight and 

radiation attributes of the SNM have not changed. Currently, inventory verifications are 

performed manually, resulting in an expensive process that exposes workers to radiation. 

Figure 3.2. Highly Enriched Uranium Material Facility [Parsons 2001] 
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CA VIS was developed to provide a method to remotely perform the inventory 
confirmation [Pickett 1 999] . CA VIS is an integrated package of low-cost sensors used to 
continuously monitor the weight, radiation, and temperature attributes of SNM [Pickett 
2003 A] . The CA VIS system detects "changes-in-state" of these attributes for the special 
nuclear material and generates an appropriate alarm. CA VIS continually receives the 
radiation, weight, and temperature signals and forms a hierarchical network of 
components including Power and Communication Distribution Units (PCDU) and Sensor 
Concentrations. Figure 3 .3 illustrates the structure of the CA VIS system. 

Several sensor types are available for monitoring the SNM attributes. This 
research projects focuses solely on the radiation sensors. The available radiation sensors 
for use in CA VIS are RADSiP™, RADTELL™, or other ORSENS™ radiation sensors. 
The radiation sensors selected for use in the CA VIS system are RADSiP TM Photodiode 
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Figure 3.3. CA VIS System Diagram 
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Gamma Ray Sensors. These sensors are small, inexpensive, and are well suited to 

monitor stored nuclear materials for long periods of time. Suggested by their name, the 

sensors monitor the gamma ray emission of a radioactive source. The sensor continually 

monitors the gamma ray emission radiation level of the SNM. Due to the long half-life 

of the nuclear material, the radiation level remains approximately constant, so any 

deviation suggests an abnormal status [Harrison 04]. 

The radiation signal, detected by the RADSiP detectors, propagates through a 

series of junctions. The signal is first sent to a sensor concentrator, manufactured by 

ORSENS, for processing. Here the signal collected by the detector is summed to 

calculate a radiation count rate. The signal is then sent to a Power and Communication 

Distribution Unit. This component provides power to the Sensor Concentrator and 

RADSiP sensors and relays the radiation count rate to a central computer system. The 

monitoring computer system can be a desktop personal computer running either a 

National Instruments Lab View® (Windows® 95) application or the GraFIC™ software 

package on a Windows® NT system [Pickett 2003 A]. The computer system 

requirement is an Intel Pentiuml 33 MHz based computer or higher. The computer 

system logs the count and performs the calculation necessary to determine if a change in 

state of the special nuclear material has occurred. 

Currently, a change in state of a radiation signal is defined as a certain deviation 

in the count rate, measured in the standard deviation of the signal, from the norm. 

Radiation counting is a Poisson process, thus the standard deviation of the radiation 

signal is the square root of the signal's mean. If an observation occurs outside of a three-
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sigma confidence interval placed on the mean then the CA VIS system will alarm. The 

CA VIS monitoring system's feature extraction module will monitor for a change in state 

using the SPRT, an optimal method, rather than the three-sigma confidence interval. 

The CA VIS system contains numerous components in the system hierarchy 

whose failure will result in a disturbance of the propagation of the radiation signal. 

CA VIS features an error and anomaly reporting module that attempts to quantify the 

status of the radiation signal based on the communication between a microprocessor 

module contained in the sensor concentration and the central computer system. If proper 

communication exists between the microprocessor module and the central computer, the 

status of the radiation signal for all RADSiP sensors common to the microprocessor is 

classified as "GOOD." If the microprocessor and the central computer are not properly 

communicating, the status of the radiation signal for all RADSiP sensors common to the 

microprocessor is classified as "BAD." This sensor signal status is incorporated as one 

of the features used by the CA VIS monitoring systems expert system to isolate root 

causes in the CA VIS system. 

Due to the integration of the sensor concentrator network, a single computer may 

monitor thousands of SNM storage vaults. Figure 3 .4 is a picture of the CA VIS system 

used in this research project. 
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Figure 3.4. CA VIS System 

3.3.1 RADSiP Radiation Sensors 

The RADSiP™ photodiode gamma ray sensor is used to monitor the radiation attribute of 

the SNM in the CA VIS system. The sensor is small ( 1 .5 cm wide by 8. 75 cm long), 

inexpensive, and well suited for continual long-term monitoring of the SNM. Suggested 

by their name, the sensors monitor the gamma ray emission of a radioactive source. The 

sensor requires a single + 12 V power supply for electronics power and the sensor is 

capable of monitoring the 20 ke V to 100 ke V gamma-ray energy band. The components 

of the sensors are a Silicon-PIN photodiode, a low-noise preamplifier, and a pulse­

shaping amplifier [Pickett 2003 C]. Gamma ray interaction within the photodiode 

produce pulses at approximately 500 counts per second per R per hour. The produced 

voltage pulse is shaped by filters in the pulse-shaping amplifier to provide an impulse 

response with a width of 20 microseconds. The detected signal level can be selected 
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using a pulse height discriminator. The discriminator lower level is set at the energy peak 
of americium-241 (60 keV), the proper lower-level adjustment for precise gamma ray 
monitoring of 235U. The discriminator upper level is adjusted to the highest energy of the 
Compton interaction pulses generated in silicon. Thus, the hardware is adjusted to 
monitor the 60-100 keV range. 235U decays to 23 1Th by an alpha decay and the daughter 
emits several characteristics gamma rays while decaying to the ground state. The most 
prevalent characteristic gamma ray is the 1 85 .7 1 5  keV gamma ray, which has a relative 
intensity of 57.2 [Schmorak 2004] . This gamma ray fluoresces neighboring uranium 
atoms due to the photoelectric effect, resulting in several K shell X-rays energy peaks in 
the 60- 1 00 keV energy range, the range monitored by the RADSiP sensor. The complete 
specification sheet for the RADSiP radiation sensors can be seen in appendix A. Figure 
3 .5 is a picture of a RADSiP photodiode gamma ray sensor. 

Figure 3.5. RADSiP photodiode gamma ray sensor 
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3.3.2 ORSENS Sensor Concentrators 

The sensor concentrator acts as the first relay junction in the CA VIS system. Here the . 
radiation signal from the RADSiP sensors is summed to calculate a radiation count rate 
and then further relayed on through the CA VIS system to the central computer system. 
The sensor concentrators used in the CA VIS system are ORSENS sensor concentrator 
which were developed with Lon Works® Technology. ORSENS sensor concentrators are 
a configurable multi channel sensor interface and signal-processing unit designed for use 
with the ORSENS sensors featured in the CA VIS system [Pickett 2003 B] . The unit has 
a voltage range for the operating power supply of 16  to 28 V DC. The sensor 
concentrator also has several features that ensure proper function and security such as an 
enclosure tamper switch, enclosure temperature sensor, and a peer-to-peer 
communications that allows the sensor concentrator to report error and anomalies 
immediately. The error and anomaly reporting is a particularly useful feature 
incorporated in the working memory of the proposed expert system. 

The sensor concentrator has a six-slot motherboard that can accommodate four 
sensor interface modules and two microprocessor modules. The four sensor interface 
modules collect the signal from the RADSiP sensors and the two- microprocessor 
modules process the signal to calculate a count rate for each sensor. The ORSEN sensors 
all have a mating interface module that allows the connection of ten channels of each 
type of sensors to each sensor interface module. Thus, a maximum of forty ORSENS 
sensors can be connected to a single sensor concentrator. The sensor concentrator also 
contains a communications processor to coordinate the relay of the sensor data from the 
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two-microprocessor modules throughout the CA VIS system. The communications 

processor is an Echelon 3 120 Neuron® based module with its embedded LonTalk® 

communications protocol. Figure 3.6 is a picture of the ORSENS sensor concentrator 

with a sensor interface module and a microprocessor module positioned beside the sensor 

concentrator. 

3.3.3 Power and Communication Distribution Unit 

The Power and Communication Distribution Unit (PCDU) acts as the second relay 

junction in the CA VIS system. The PCDU relays the processed radiation signal from the 

sensor concentrators to the central communication computer. The PCDU unit also 

provides power to the RADSiP radiation sensors, and the sensor concentrators. The 

PCDU unit has mating interfaces available for up to four sensor concentrators. Thus, the 

Figure 3.6. ORSENS Sensor Concentrator 
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PCDU unit is capable of providing power and relaying the radiation signal to the central 

computer for up to 160 ORSENS sensors. The PCDU units can also be daisy chained 

together if additional sensors are necessary. Figure 3. 7 is a picture of the Power and 

Communication Unit used in the CA VIS system. 

3.4 CA VIS Deficiencies 

The CA VIS system is susceptible to alarms, which may not coincide with the removal of 

special nuclear material. Several factors can result in false radiation sensors alarms. 

First, the statistical nature of radioactive decay and counting may cause the count rate to 

fall outside of the commonly used 95% confidence intervals. In such an instance, the 

state of the SNM has not changed and the CA VIS system incorrectly alarms. Secondly, 

CA VIS 

Figure 3. 7. Power and Communication Distribution Unit 
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the CA VIS system is comprised of numerous components that may fail over time. Thus, 
the CA VIS system may generate alarms due to component failures, which are not 
correlated with changes in the SNM. Thirdly, the storage area is a functioning warehouse 
that may have radioactive material being moved. These external radiation sources may 
be detected by the CA VIS system causing an alarm in the region of the warehouse where 
the external radiation source is located. Fourthly, the radiation sensors used in the 
CA VIS system display a spike behavior when they are impacted. Forklifts and other 
heavy equipment moving in the warehouse may cause impacts that are transmitted to the 
CA VIS storage vaults inducing spikes in the count rates. In addition to inducing spikes, a 
collision between heavy machinery and the CA VIS storage vault may cause the RADSiP 
radiation sensors to move. 

The radiation signals are affected by source (SNM) distance, collimation of the 
source, and the SNM container thickness and material . If the collision results in any 
movement of the RADSiP or the SNM the sensor count rate may decrease and induce 
CA VIS alarms. Finally, the CA VIS system has displayed a dependence on 
environmental stimuli such as heat and humidity. Thus, the environmental conditions of 
the storage area may cause the CA VIS system to generate false alarms. These numerous 
conditions can all result in CA VIS false alarms, which may result in unnecessary and 
costly inventory checks. 
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3.5 CA VIS Component Failure 

Several experiments were performed on the CA VIS system to explore the effect various 

CA VIS component failures have on the CA VIS system. The CA VIS system was tested 

for these effects by simulating a CA VIS component failure following a normal operating 

condition counting experiment. Thus, it was possible to correlate any observed behavior 

in the reported count rate to the induced failure. Due to a limited amount of CA VIS 

equipment, it was not feasible to destroy or fail any of the equipment. Thus, the only 

method to simulate a CA VIS component failure was to remove or unplug the component 

to be failed. As previously discussed and illustrated by figure 3.3 the CA VIS system is a 

hierarchical system in which a component failure may produce a response in the 

components that are common to the failed component. For example, if a sensor interface 

modules in the sensor concentrator were to fail, the RADSiP sensors common to the 

interface module would exhibit a change in state of their radiation signal. This section 

describes the behavior of the RADSiP radiation signal when each component of the 

CA VIS system fails. Also, this section describes RADSiP radiation signal behavior 

observed in CA VIS data sets collected at the Y-12 National Security Complex. It is not 

possible to know how or why the component failed in the Y-12 data sets, only that the 

RADSiP radiation signal displayed a certain behavior corresponding to some failed 

component. 
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3.5.1 RADSiP Sensor Failure 

The RADSiP radiation sensors are connected individually to the Sensor Concentrator by 

a two-prong wire. This connection provides power to the RADSiP sensor and relays the 

radiation signal from the sensor to the sensor concentrator junction. If the RADSiP fails 

or the wire is damaged, the radiation signal goes to and remains at zero. The CA VIS 

systems error and anomaly-reporting module monitors the status of the radiation signal 

from each RADSiP. Individual RADSiP sensor failures do not affect the communication 

between the microprocessor module common to the sensor and the central computer 

system. Thus, the CA VIS systems error and anomaly reporting module is unable to 

detect the failure and will continue to report a radiation signal status of "GOOD" for the 

failed or unplugged sensor. 

3.5.2 Sensor Concentrator Failure 

The sensor concentrator acts as the first relay junction in the CA VIS system where the 

radiation signal from the RADSiP sensors is summed to calculate a radiation count rate 

and then further relayed on through the CA VIS system. The Sensor Concentrator is 

connected by a two-prong wire to each of the RADSiP radiation sensors, which provided 

power to the RADSiP and relays the radiation signal from the RADSiP to the Sensor 

Concentrator. The Sensor concentrator is connected to the PCDU by a large gauge wire 

whereby the PCDU provides power to the Sensor Concentrator and receives the radiation 

signals. If the sensor concentrator fails or the large gauge wire is damaged, the radiation 

signal for each RADSiP sensor common to that concentrator will go to and remain at 
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zero. Also, the CA VIS system self-diagnosis feature is capable of detecting this failure 

and will report a radiation signal status of "BAD" for each RADSiP sensor corresponding 

to the failure. 

The sensor concentrator has a six-slot motherboard that accommodates four sensor 

interface modules and two microprocessor modules that are all capable of failure. The 

sensor interface modules collect the radiation signal from the RADSiP sensors and relay 

the processed signal to the PCDU junction in the CA VIS system. Five RADSiP radiation 

sensors are common to each sensor interface module. When a sensor interface module 

fails, the radiation signal for each RADSiP sensor common to the module goes to and 

remains at zero. Sensor interface module failures are not detected by the CA VIS system 

self diagnosis features and the radiation signal status will remain at "GOOD" throughout 

this type of failure. The two- microprocessor modules process the signal to calculate a 

count rate for each RADSiP sensor. Ten RADSiP radiation sensors are common to each 

microprocessor module. When a microprocessor module fails the radiation signal for 

each RADSiP sensor common to the module goes to and remains at zero. When a 

microprocessor module fails, the CA VIS system self-diagnosis feature will detect the 

failure and report a radiation signal status of "BAD" for each RADSiP sensor common to 

the failed sensor interface module. 

3.5.3 PCDU Failure 

The PCDU provides power to the RADSiP radiation sensors, and the sensor 

concentrators and also acts as the second relay junction in the CA VIS system. The 
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PCDU unit has mating interfaces for up to four sensor concentrators, thus one PCDU 
provides power to four-sensor concentrators power and relays the radiation signal to the 
central computer for 80 RADSiPs. If the PCDU experiences a power loss the radiation 
signal for all RADSiP sensors common to the PCDU goes to and remains at zero. Also, 
the radiation signal status is "BAD" for all RADSiP sensors common to the PCDU. The 
PCDU is connected to the central communication computer by a large gauge wire. In the 
event this wire become damaged or unplugged the radiation signal for the RADSiP 
sensors common to the PCDU goes to and remains at zero. Also, the radiation signal 
status is "BAD" for all RADSiP sensors common to the PCDU. The PCDU units can 
also be daisy chained together if additional sensors are necessary. Due to equipment 
limitations the effect of a PCDU failure at a point in the chain on the other PCDU in the 
chain is not known. 

3.5.4 Y-12 Data Set Component Failure 

The radiation signal from several CA VIS data sets collected over a period of several 
months at the Y- 1 2  National Security Complex were analyzed for behavior representative 
of CA VIS component failure. The data were collected at one-hour intervals with no 
alterations made to the system; thus any abnormal changes to the count rate indicate a 
system degradation or component failure. As previously discussed, it is not possible to 
know how or why the component failed in the Y- 1 2  data sets, only that the RADSiP 
radiation signal displayed a certain behavior that may be indicative of a failed 
component. Of the forty analyzed data sets, twenty-two display some behavior that 
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appears to be related to component failure. The behavior that these component failure 

data sets display is RADSiP sensors that are "stuck" and common to some component. A 

"stuck" sensor is a radiation sensor that returns some non-zero count rate repeatedly 

without variation. All twenty-two of the component failure data sets contain a Sensor 

Concentrator wide "stick" or a portion of the data set where all twenty of the RADSiP 

common to a sensor concentrator are stuck. Here the assumption can be made that some 

failure in the Sensor Concentrator resulted in the stuck sensors. Figure 3.8 illustrates a 

Sensor Concentrator stick. 

Further analysis of the component failure data sets reveals that prior to the sensor 

concentrator sticks, individual sensors will have brief instances of being stuck and then 

return to normal operation. These sticks may last for five or six data observations (five or 
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Figure 3.8. Sensor Concentrator Stick 
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six hours) before the sensor returns to normal operation. This behavior may be a 
precursor to a sensor concentrator failure that will occur later in the data set. All of the 
twenty-two data sets containing a sensor concentrator failure exhibited this random stuck 
detector behavior prior to the sensor concentrator failure. However, due to the manner in 
which the data sets were collected it is impossible to be certain this behavior is a 
precursor. 

The component failure data set also contain instances in which a sensor interface 
module fails. In these instances, the radiation signals for five of the twenty RADSiP 
sensors will display some common abnormal behavior. This abnormal behavior is a zero 
count rate for each sensor common to the module. All five of these sensors correspond to 
the same sensor interface module due to their consecutive labeling (Sensor Labels: 1 -5 ,  6-
1 0, 1 1 - 1 5 ,  1 6-20). The root cause of these abnormal behaviors is unknown, only that the 
behavior is common to the sensor interface module. Figure 3 .9 illustrates a sensor 
interface module failure for one module in a Sensor Concentrator. 

3.6 CA VIS Environmental Effects 

The CA VIS system is designed to monitor the material year round; therefore, it is 
necessary to ensure that changes in the environmental conditions of the storage area, 
which may be induced by the changing seasons, will have no effect on the radiation 
sensors and their radiation signal. The current CA VIS facilities have no humidity control 
and limited temperature control. The HEUMF will have both temperature and humidity 
control however; RADSiP environmental response is advantageous information to 
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contain in the expert systems knowledge base. Thus, several experiments were 
performed to determine the RADSiP sensor response to temperature and humidity 
variation. The Sensor Concentrator and PCDU were not tested for environmental effects 
due to equipment limitations. The manufacturers of the RADSiP radiation sensors have 
provided specifications for the sensors. The allowable operating range temperature for 
the sensor is -20 to 1 25 degrees Fahrenheit. The humidity operating range is between 0 -
100% humidity. This operating range should cover the environment in which the 
radiation sensors are housed. These experiments were performed to ensure that the 
radiation sensors do not exhibit any flawed performance in or near this operating range. 
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3.6.1 CA VIS Environmental Testing Methodology 

The effect of environmental changes on the response of the RADSiP radiation sensors 
was tested using a simple environmental chamber. The environmental chamber was 
constructed using an aquarium with a heater or a humidifier inside it. By performing 
counting experiments inside of the chamber with either the heater or humidifier operating 
it was possible to observe the effect these environmental stimuli have on the responses of 
the radiation sensors. Only the sensor was stressed by the environmental changes, the 
effects on the power supplies, and remote signal processing electronics was not tested. 

The device used to heat the chamber was a compact fan-forced heater with two­
power setting of 750/ 1 500 watts. The heater was capable of heating the environment 
inside of the aquarium to approximately 1 50 degrees Fahrenheit. The heater featured a 
thermostat that enables the temperature in the chamber to be held somewhat constant. A 
device to lower the temperature of the chamber was not incorporated in the experiment, 
however the ambient temperature of the room in which the experiments were performed 
was approximately 65 degrees Fahrenheit. Thus, the radiation sensors were subjected to 
a temperature range of approximately 65 - 1 50 degrees Fahrenheit. 

To test the response of the radiation detectors to various amounts of humidity, a 
similar technique was incorporated. The detectors were placed inside the environmental 
chamber along with a humidifier. The humidifier was a 2.5-gallon model capable of 
humidifying an 1 100 ft:2 area. The humidifier was able to completely saturate the 
environmental chamber. Turning the humidifier on inside of the chamber and monitoring 
the response of the detectors tested the detectors response to humidity. A hygrometer 
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was not available to monitor the exact humidity of the chamber. This was not an issue as 

this experiment was only looking for changes in response inside the sensors operating 

range. The allowable operating range given in the manufactures specification sheet is O -

100% humidity, thus it was not possible to stress the sensor outside of its operating range. 

The counting experiment performed inside of the environmental chamber featured 

the RADSiP radiation sensors monitoring the activity of a I O  micro Curie Barium 133 

source. A Barium 133 source is utilized because a portion of its gamma emission energy 

(79.6 139 keV 2.62% of decay, 80.997 1 keV 34.06% of decay) is contained within the 

energy ranged monitored by the RADSiP sensor ( 60- 100 ke V). During the counting 

experiment the temperature or humidity inside of the environmental chamber was 

changed and any observed effect in the radiation signal was correlated to the 

environmental change. To determine if the environmental stimuli induced a change in 

state of the radiation signal, the signal was analyzed using the sequential probability ratio 

test (SPRT) [Wald 1945]. The SPRT is a test that is capable of monitoring statistical 

properties of a Gaussian distribution. The SPRT is capable of detecting a change in the 

mean or variance of the radiation signal caused by the environmental stimuli. Additional 

information concerning the SPRT can be found in chapter 4.3 . 

The result of the SPRT test used to analyze the data from the environmental 

experiments is a plot that illustrates when an alarm occurs. The plot is broken into 

subplots of the reported count rate and of the four hypothesis of the SPR T test: mean 

shift up (hypothesis I ), mean shift down (hypothesis 2), variance shift up (hypothesis 3), 

variance shift down (hypothesis 4). The SPRT plot features circles that indicate alarms 
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that the test detects. The number of alarms generated during the SPR T test is dependent 

upon the number of data points in the set and the mean of the data set. The nature of a 

stochastic statistical distribution results in some data streams that will cause a false SPRT 

alarm. In addition, testing has indicated that the SPRT is slightly more likely to alarm 

with higher data mean values. To account for these properties, post processing has been 

incorporated. However when this experiment was performed, post processing was not in 

place and the results of SPRT must be interpreted accordingly. Testing of the SPRT with 

fabricated data has indicated that an alarm rate of 1 alarm per 1 0,000 data points can be 

expected. If a data set contains more than 1 alarm per 1 0,000 data points it is an 

indication that a change in the statistical properties of the data set may exist. 

A Labview data acquisition system is used to record the radiation count rate and 

the temperature of the environmental chamber adjacent to the sensors. It should be noted 

that inside the radiation sensors, where the electronics exist, might be at a slightly 

different temperature than the temperature measured by the thermocouples. Inside the 

environmental chamber are the radioactive sources that are attached to the radiation 

detectors and the thermocouples. The heater is located on the top of the chamber and 

blows heated air into the chamber. When the humidifier is used, it is located inside the 

chamber. Figure 3 . 1 0  illustrates the basic setup for the environmental testing 
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Figure 3.10. Environmental Chamber Setup 

3.6.2 Temperature Experiment Results 

A counting experiment was performed inside an environmental chamber. During the 

experiment the temperature of the chamber was either increased or decreased to test the 

effect that temperature variation had on the RADSiP radiation sensors. The results of the 

temperature variation are rather difficult to characterize. In general, the radiation sensors 

show no response to nominal temperature variations. However, in some instances the 

sensors response is sporadic and troublesome. The experiments indicate that the sporadic 

behavior occurs when the sensors are exposed to temperatures greater than 110 degrees 

Fahrenheit. This sporadic behavior is a "ramp up", or a steady increase in reported 

activity, as the temperature of the environment increases, followed by a "ramp down" 

behavior as the environment cools. This temperature effect should not be problematic as 
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it is unlikely the sensors will be exposed to such high temperatures in their everyday use. 
However, the temperature effect should be noted and may be included in the rule base 
knowledge of the FDI system. 

The following example demonstrates how a large temperature variation may 
result in a change in state of the RADSiP radiation signal. Data were sampled every 5 
seconds during the experiment. The temperature of the environmental chamber is held 
fairly constant at 90 - 100 degrees Fahrenheit except for two two-hour intervals in which 
the temperature was increased to approximately 1 50 degrees. This temperature variation 
may seem extreme, but during most of the experiment the average temperature was 
approximately 95 degrees, well within the operating range of the sensors. Figure 3 . 1 1 is 
a plot of the temperature of the environmental chamber during the experiment, the 
response of the radiation sensors to the temperature variations and the SPRT analysis of 
the signal. 

Figure 3 . 1 1 indicates that several SPRT mean shift up and variance shift up 
alarms occurred during the experiment. The SPRT alarms occur during the portion of the 
experiment when the sensor was exposed to high and greatly varying temperatures. In 
contrast, when the temperature is held relatively constant near 95 degrees Fahrenheit, the 
radiation signal does not contain any SPR T alarms except for a spurious mean shift down 
alarms. This and other results indicate that greatly varying temperatures above 1 1 0 
degrees Fahrenheit may induce a change in the response of the sensors. The result does 
demonstrate some temperature dependence, however it may not be very applicable as the 
temperature of the CA VIS storage area should never be this high or vary this rapidly. 
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Figure 3.11  Environ. Chamber Temperature, SPRT Analysis of Sensor Response 
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3.6.3 Humidity Experiments Results 

A counting experiment was performed inside an environmental chamber. During the 

experiment the humidity of the chamber was increased to test the RADSiP response to 

various amounts of humidity. Data were sampled every five seconds during the 

experiment. In general, the RADSiP sensors do no display any dependence on the 

humidity of the environment in which they are housed. In the following example, the 

RADSiP radiation sensors were exposed to various amounts of humidity to test their 

responses to this environmental stimulus. The chamber initially had the same humidity 

as the surrounding room, which will be assumed to be none. At the two-hour point of the 

experiment, humidity was added to the chamber using a humidifier. The humidifier was 

left running for 15 hours. The environmental chamber was completely saturated at the 

end of the experiment. Figure 3.12 displays the results of the SPRT on the sensor signal 

exposed to these conditions. 

The SPR T indicates that the radiation signal did not experience a change in state 

while being exposed to the various levels of humidity although a few spurious alarms 

occurred. Thus, this RADSiP sensor displays no dependence on the humidity level it is 

exposed to. This result is characteristic of the RADSiP response to all of the performed 

humidity environmental experiments. 

3.6.4 CA VIS Environmental Conclusions 

The environmental experiments indicated that the RADSiP radiation sensors 

manufacturers suggested operating ranges are fairly accurate, however when the sensors 
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Figure 3.12. RADSiP Response to Humidity Variation, SPRT Result 

are exposed to temperatures at the extremes of their operating ranges their responses can 
be difficult to characterize. Variations in the humidity level of the RADSiP's 
environment had a null effect on the sensors response. Testing of the RADSiP sensors 
response to temperature variations found the radiation signal remains unaffected up to 
1 10 degrees Fahrenheit. In some instances, when the RADSiP sensors were exposed to 
greatly varying temperatures greater than 1 1 0 degrees Fahrenheit the radiation signals 
would experience ·mean and variance increases. This upper temperature limit is slightly 
less than the manufacturers specified temperature limit. However due to the rudimentary 
nature of these environmental experiments, it is difficult to make any suggestions for 
changes in the temperature operating range. Thus, the environmental experimentation 
indicates that the RADSiP radiation signal is unaffected by humidity variations, and the 
62 



www.manaraa.com

radiation signal should remain unaffected by temperature variations less than 110 degrees 

Fahrenheit. 
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4 Fault Detection and Isolation, and Regional Anomaly Monitoring 

Module Methodology 

This chapter contains the Fault Detection and Isolation (FDI) system methodology and 

the Regional Anomaly Monitoring Module (RAMM) methodology that together are used 

to monitor the CA VIS system. The FDI system was developed to improve the CA VIS 

system reliability and eliminate unnecessary inventory checks. The system merges 

advanced statistical algorithms, such as the sequential probability ratio test (SPRT) [Wald 

1 945], to extract features related to changes in the CA VIS sensors with an expert system 

that forms a hypothesis of the root cause of any anomaly. The SPRT is a statistical 

method used to detect changes in the characteristics of a data stream. The SPR T is used 

to extract features, which are used by an expert system. An expert system is a rule-based 

system designed to perform functions similar to those of an expert. The RAMM features 

kernel-averaging techniques to detect the presence of and track the location of external 

radiation sources in the vicinity of the CA VIS system and other anomalies that affect 

regions of the CA VIS system. The contents of this chapter include a discussion of the 

system's software environment, an overview of the FDI system architecture, a discussion 

of the SPRT and feature extraction system, a discussion of the expert system, and a 

discussion of the RAMM. 
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4.1 Software and Computing Environment 

The CA VIS monitoring system was implemented in MATLAB (Matrix Laboratory) with 

Microsoft EXCEL acting as the system database. MATLAB is a software package for 

numerical computation and graphical applications in scientific and engineering 

applications. MATLAB can run on many platforms including Windows, Macintosh, 

Linux, DEC, VAX, and Sun. MATLAB was chosen for implementation due to ease of 

use, availability of the software, and the ability to communicate with Microsoft EXCEL, 

the program implemented as the database for the FDI system. Microsoft EXCEL is a 

popular spreadsheet software that is a component of Microsoft Office. Excel will also 

run on many platforms such as Windows, Macintosh, etc. 

MATLAB is a programmable language that can be implemented at a command 

prompt or in command files known as m-files. The language features standard 

programmable constructs such as IF, FOR, WHILE, etc. ,  logical operators such as AND, 

OR, XOR, etc, string manipulation, file input/output, and graphical user interface 

abilities. MATLAB is a vectorized language that performs poorly with DO and FOR 

loops. However, MATLAB can be converted to C code, or compiled as stand alone 

applications to remedy the poor performance. Dynamic data exchange allows MATLAB 

to communicate with other Windows applications such as Microsoft Excel. 

Microsoft Excel is a popular spreadsheet program used in many applications. 

Excel is capable of simple arithmetic operation, graphical applications, and data analysis. 

In this research Excel is used as a database. The program was chosen due to simplicity 

and ease of communication with MATLAB. 
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4.2 Overview of the FDI System Architecture 

A monitoring and diagnosis system combining feature extraction, by a SPRT and other 
statistical measures, with an expert system was developed and optimized to monitor the 
CA VIS system in order to eliminate costly alarm responses and unnecessary inventory 
checks. Figure 4. 1 is a flow chart that illustrates the overall processes of CA VIS data 
collection, the flow of this data into the CA VIS monitoring system for feature extraction, 
fault detection and fault isolation, and the final output to a graphical user interface. 

CA VIS collects sensor measurements that are analyzed by the SPRT to extract 
several features from the radiation count rates for each sensor and writes them to a 
feature set. Additional features are derived from the time history of the count rates and 
added to the feature set. The expert system analyzes the extracted features and maps 
them to possible root causes of failure identified for the CA VIS system. Information 
concerning the root cause is sent to a graphical user interface. 

Figure 4.2 is a flow chart specific to the FDI system that completely illustrates the 
path of data in the CA VIS monitoring system. The time and count rate of the radiation 
signals for each vault are collected by CA VIS and stored in the Excel Database "Counts" . 
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Figure 4.2. CA VIS Monitoring System Data Flow Chart 

The sequential probability test analyzes these data, produces alarms if variances or means 

have changed past a 3-sigma confidence interval, and records the alarms in the Excel 

Databases "FeatueExt" and "Ind50". The feature extraction module extracts alarms rates 

and other necessary features from the two databases and records them in the Excel 

Database "ExpSys" that acts as the working memory for the expert system. The expert 

system processes the working memory in an attempt to determine the source of the fault. 

First the expert system detection module compares the values of the extracted features in 

Excel Database "ExpSys" to a set of tolerances to determine if a fault in any of the 

radiation signals has occurred. If the extracted features do not exceed the tolerances then 

no faults have occurred and the system will reinitialize. If the extracted features exceed a 

set tolerance, then a fault has occurred and the type of fault and the identification number 

of the culprit sensor will be stored in Excel Database "Faults". Also, the detected fault 

will initialize the expert system fault isolation module that attempts to determine the 
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source of the fault by analyzing what features were affected by the fault, and which faults 

had previously occurred. The isolated fault will be stored in an Excel Database 

"Identification", and information concerning the fault will be sent to a graphical user 

interface. The Y-1 2  procedure for the remedy of detected root causes of failure in the 

CA VIS system is not known, thus the CA VIS monitoring system does not feature an 

advisory module to assist Y-1 2 operators in the repair of the CA VIS system. 

4.3 Sequential Probability Ratio Test (SPRT) 

This section describes the SPRT that is used to analyzes the CA VIS radiation signals. 

The application of the SPRT in the CA VIS monitoring system is the work of T Jay 

Harrison and additional information concerning the application can be found in his thesis 

[Harrison 04] . The description of the SPR T is included in this work for completeness. 

The SPRT is a statistical test developed by A. Wald in 1 945 that is capable of 

monitoring statistical properties of a Gaussian distribution. The SPR T determines if an 

input data stream was generated by the expected, normal Gaussian distribution 

characterized by an expected mean and variance, or if there is a greater probability that 

the data stream comes from some alternate distribution characterized by a shifted mean 

and/or altered variance. If the input comes from the alternate distribution, the SPRT will 

generate an appropriate alarm. This technique is capable of monitoring two attributes of 

the radiation distribution: mean and variance, in contrast to previous techniques [Bell], 

which only monitored the mean. By monitoring two attributes of the radiation 
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distribution, the SPRT-based system is capable of identifying additional operational 

faults. 

The SPR T evaluates the radiation signal for four alternative hypotheses; increase 

(H 1 ) or decrease (H2) in signal mean by an amount M and an increase (H3) in variance of 

amount v+ or a decrease (H4) in signal variance by amount v-. If the signal has a greater 

likelihood of having been a member of an alternative hypothesis than having been a 

member of the null hypothesis, the SPRT for that particular hypothesis alarms. For every 

data observation, the SPRT calculates a likelihood that the data stream belongs to the 

original distribution or one of the four alternative hypotheses. That likelihood is given by 

equation 4. 1 

Eq. 4. 1 

where P(Y n lHx) is the probability of an observed sequence Y n given that Hx is true. The 

radioactive decay process is Poisson and then approximated by a Gaussian, thus the 

likelihood of each of the alternative hypotheses is given by equation 4.2-4.5. 

Eq. 4.2 

Eq. 4.3 

Eq. 4.4 
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Eq.4.5 

The SPRT equations, given by equation 4.6-4.9, are defined by taking the natural log of 

the likelihood equations. 

SPRT2 = [ - \ t M(2yk + M)] 
2cr k=I 

SPRT = (- � 1n v+ )+ [-=-!_(l - V + )t. 2 ] 
3 2 2 2 v + Yk 

0 k=I 

SPRT = (- � 1n v- )+ [-=-!_(I - v- )t. 2 ] 
4 2 2 2 

v - Yk 
0 k=I 

Eq. 4.6 

Eq. 4.7 

Eq. 4.8 

Eq. 4.9 

The parameters for these alternative hypotheses (H 1 -H4), M, v+ , and V, are defined by 

the mean µ and variance d- of the radiation signal, which are equal due to the mean-

variance equality inherent in Poisson processes such as radioactive decay. The amount 

by which the mean shifts up or down, M, is set for three standard deviations. This 

mirrors a +/- 3cr band for the desired 99+% confidence interval. That is, if for a sequence 

of data points the SPR T alarms with a mean up or mean down indication, the alarm has a 

99+% probability of not being a false alarm. The factors by which the variance increases 

y+ or decreases v-, are set to reflect the shifted means. Because the mean µ equals the 

variance d-, the variance for the increased mean hypothesis is µ + M = µ + 3cr. Thus, the 
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ratio of the new variance to the old variance is (µ + M)/µ = 1 + 3/cr for a variance 

increase and 1 - 3/cr for a variance decrease. 

The results of the SPRT equations are compared to two parameters, ln(A) and 

ln(B), to determine if the radiation distribution has changed. A and B are defined by 

A = -p-
1- a 

B = 
1- p 

a 
Eq. 4.10 

where the parameters a and P are the set false (Type I) and missed (Type II) alarm rates, 

respectively. The sensitivity of the SPRT depends on these false- and missed-alarm 

probabilities. This research sets a and p at 0.1 % and 10%, respectively. The low value 

for a reflects the need to minimize the number of false alarms -roughly 1 false alarm per 

1000 data observations, or 99.9% accuracy in sounding alarms. The value for P is set 

arbitrarily at 10% based on the assumption that if an actual alarm condition occurs but 

does not trigger an alarm, it will trigger an alarm at a future time step. 

If the result of any SRPT equation is greater than ln(B), the SPRT alarms for that 

hypothesis then resets to 0 and starts a new collection sequence. If the result of any 

SPRT equation is less than ln(A), the SPRT resets to 0 and starts a new collection 

sequence. For more information of the feature extraction module see Harrison. 

4.4 Feature Extraction Module 

This section describes the Feature Extraction Module that is used to extracted features 

from the CA VIS radiation signals. This module in the CA VIS monitoring system is the 
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work of T Jay Harrison and additional information concerning the application can be 

found in his thesis [Harrison 04]. The discussion of the Feature Extraction Module is 

presented here for completeness. 

The feature extraction system (FES) acts as a pre-processor for the collected data. 

The FES acts as custodian and interpreter for the count rate database and extracts 

information useful to the expert system. It does so using the SPRT to calculate, track, 

and communicate trends within the collected count rates. The FES sums the number of 

all alternative hypothesis alarms over the last I 00 and I 000 data points and tracks the 

interval since the last alarm for each hypothesis. The FES also extracts the variance of 

the last five and fifty data observations and performs a test on the sign of the residuals. 

This is commonly known as Run Test 2: nine consecutive points same side of average 

[Western Electric 1 958, Nelson 1 984]. Two other features used by the expert system 

include the current count rate and a built-in system status signal from the CA VIS 

hardware. The FES supplies the current count rate directly to the expert system database 

without processing, but the FES does not extract the system status signal, which is 

supplied directly from CA VIS. The expert system uses these extracted features to isolate 

and diagnose system faults. 

4.5 Expert System 

An expert system is an intelligent computer program that uses knowledge and inference 

procedures to solve problems that may require significant human expertise [Feigenbaum 

1 982]. When applied to the CA VIS system, an expert system may reduce the number of 
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unnecessary inventory checks by determining alternative explanations for the alarm, 

besides the removal of SNM. This will allow workers to investigate the alternate 

explanation first, which will save time, money, and possibly radiation exposure. For 

example, the radiation sensors used in the CA VIS system may display some dependence 

on temperature. This dependence may cause "spikes" or "ramp up" behavior in their 

reading of the reactivity of the source. Without an expert system the response to this 

behavior may be an inventory check. However, an expert system might recognize the 

problem as an increase in temperature. The expert system would then make an alternate 

suggestion to check the temperature of the storage room rather than performing an 

inventory check. Recall that the expert system can only make this suggestion if it has a 

rule base that incorporates knowledge concerning the functionality of the radiation 

sensors. Thus, for an expert system to work properly it requires a complete 

understanding of every component of the system it monitors and contain the heuristic 

knowledge of an expert. The following sections describe the implementation of the fault 

detection and isolation expert system in the CA VIS monitoring system. 

4.5.1 Expert System Fault Detection 

The expert system compares the extracted features values with a set of tolerances to 

detect any faults that have occurred. The tolerances are set to ensure a 99% or greater 

confidence interval in the faulted state of the feature when possible. The tolerances for 

the SPRT alarms are set according to the results of a parametric study, the result of which 

can be seen in Harrison. The tolerances for the remaining features are set using simple 
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probabilistic calculations. Table 4. 1 contains a complete listing of the tolerances for the 
extracted features. 

If any value of the extracted features exceeds its tolerance, then a fault is 
generated for that sensor. For example, if the radiation signal for a particular sensor 
experiences five SPRT mean shift up alarms in l 000 data observations, then feature l is 
faulted for the particular sensor. A faulted feature for a sensor implies there is a 99% or 
greater confidence that the sensors radiation signal has experienced a "change in state" or 
CAVIS has experienced some failure. 

The tolerances for the SPR T alarms have bases from different conceptual and 
experimental sources. The maximum number of SPRT alarms in the last l 00 or 1 000 
data points is set through experiments and theory. By counting faults over a fixed 

Table 4.1. Fault Detection Tolerances for Extracted Features. 
Feature Fault Tolerance: Feat. faulted if . . .  

F l : Mean Shift Up SPRT ( 1 000 obs.) 5 SPRT MSU alarms in 1 000 obs. 
F2 : Mean Shift Down SPRT ( 1 000 obs.) 5 SPRT MSD alarms in 1 000 obs. 
F3 : Variance Shift Up SPRT ( 1 000 obs.) 5 SPRT VSU alarms in 1 000 obs. 

F4: Variance Shift Down SPRT ( 1 000 obs.) 5 SPRT VSD alarms in 1 000 obs. 
F5 : Successive Mean Shift Up MSU SPRT alarms for 2 cons. data obs. 

F6: Successive Mean Shift Down MSD SPRT alarms for 2 cons. data obs. 
F7: Successive Variance Shift Up VSU SPRT alarms for 2 cons. data obs. 

F8: Successive Variance Shift Down VSD SPRT alarms for 2 cons. data obs. 
F9: Run Test 2 Nine cons. data obs. on same side of mean 

F l  0: Variance of last 50 points Variance of last 50 data obs. equals zero 
F 1 1  : Variance of last 5 points Variance of last 5 data obs. equals zero 

F 1 2 : Mean Shift Up SPRT ( 1 00 obs.) 3 SPRT MSU alarms in I 00 obs. 
F 1 3 :  Mean Shift Down SPRT ( 1 00 obs.) 3 SPRT MSD alarms in 1 00 obs. 
F 1 4 :  Variance Shift Up SPRT ( 1 00 obs.) 3 SPRT VSU alarms in 1 00 obs. 

F l  5: Variance Shift Down SPRT ( 1 00 obs.) 3 SPRT VSD alarms in I 00 obs. 
F 1 6: Current Count Rate Current count rate equals zero 

F l  7: Communication Status of CA VIS Communication status of CA VIS i s  "bad" 
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number of data points, this effectively measures the alarm rate. Experimentally, an 

unfaulted distribution will produce a total number of faults as tabulated in a parametric 

study [Harrison 04] .  The expected total alarm rate for means ranging from 25 to 145 is 

around 2 * 1 04
, while the alarm rates for hypotheses l and 2 are around 0.75 * 1 04 and 

hypotheses 3 and 4 are around 0.25 * 1 04
. However, if the fault tolerances were set at 

levels that low, one random data point outside the 3cr bands would be sufficient to cause 

an SPRT alarm. The two-consecutive-alarms metric is intended to account for the 

decreased sensitivity brought about by increasing the tolerated fault rate. This therefore 

serves as a surrogate alarm threshold for finding drifting or wildly varying systems. 

The remaining features tolerances were set according to probabilistic calculations. 

Since the SNM count rates range between 25- 145, the radiation signal can be 

approximated with a Gaussian distribution. Thus, the likelihood of any particular count 

occurrmg 1s 

-(x-µ )
2 

1 l -,-
P(x I µ ,cr ) = --- e  20 -

.fi;i cr 
Eq. 4. 1 1  

where P is the probability of the count, µ is the mean of the count rate, cr is the standard 

deviation of the count rate ( cr = µ 1 12), and x is the count rate for which probability is to be 

determined. The tolerances for feature 1 0  (variance of last 50 observations), feature 1 1  

(variance of last 5 observations), and feature 1 6  (current count rate) are set using equation 

4. 1 1  to ensure a 99% confidence. 

When a fault is generated, the time of the fault, the culprit sensor, and the type of 

fault are recorded in a database. This database is used as a log to keep a record of all 
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fault ·occurrences and as a supplement to the working memory of the expert system. 

Also, a detected fault initializes the fault isolation portion of the expert system. 

4.5.2 Expert System Fault Isolation 

When a fault is detected in an extracted feature, the expert system attempts to isolate the 

root cause of the fault using its programmed rule base knowledge. The rule base 

knowledge is a collection of IF /THEN rules containing information mapping the feature 

space to the fault space. The rule base contains a hierarchal collection of root causes and 

alarmed features that may be "characteristic" of certain faults. The hierarchal rule base 

allows physical component failures to be isolated by comparing the number of failed 

sensors to the total number of sensors that correspond to a certain component. An 

example rule is "if all the RADSiP sensors that correspond to a certain component fail, 

the fault exists in the component rather than in each of the sensors." Figure 4.3 further 

illustrates CA VIS component failure isolation using a hierarchal knowledge base. 

In addition to the hierarchal rule base, the expert system can isolate faults based 

on what features are alarmed for a particular sensor. In many instances, certain faults 

may be characteristic of certain failures that a sensor may experience. For example, a 

signal variance. Thus, the root cause of an increase in variance fault could be a loose 

electrical connection for the culprit sensor. 

CA VIS testing has identified a number of abnormal behaviors that can occur in 

the reported radiation signals. These abnormalities are zero count rate (ZCR), stuck 
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S,nam 

count rate (SCR), count rate mean shift up and down (MSU/MSD), count rate variance 

shift up and down (VSUNSD), and spike in count rate (SpS). Faults in certain features 

are characteristic of all of these abnormalities in the radiation signal. In addition, all of 

these abnormalities can be mapped to a root cause. Thus, it is possible to associate a set 

of faulted features with a root cause. Table 4.2 contains a mapping of the known root 

causes to a set of alarming features .  The table contains the logic necessary to identify the 

root cause. The character ,..., (not) in the table indicates that the following features must be 

in a non-alarmed state. 

The logic contained in table 4.2 is used as the rule base knowledge of the expert 

system to isolate root causes in CA VIS. The knowledge base enables the detection of 

characteristic faults such as dead or stuck sensors, which affect individual sensors, and 
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Table 4.2. Map of Feature Space to Root Cause 
Root Cause Symptom FOi Detection Logic (Feature) 

Dead Sensor 1 1 & 1 6  

Stuck Sensor 1 1 &- 16  

Temp. Inc. Sensor Drift 1 &3& 1 2& 1 4  

External Radiation Source 1 &3& 1 2& 1 4  or (RAMM) 

Removal of SNM -1 &2&-4&-1 1 &-1 2& 1 3&- 14  

Loose Elec. Connection -1 &-2&3&-1 2&-1 3& 1 4&- 1 6  

Dead Sensor PCDU 1 1  & 1 6  (All Sen. PCDU) 

Stuck Sensor PCDU 1 1  &-1 6  (All Sen. PCDU) 

Loose Elec. Conn. PCDU -1 &-2&3&-1 2&- 1 3& 1 4&- 16  (All Sen. PCDU) 

Dead Sensor. Concentrator. 1 1 & 1 6  (All Sen. Cone.) 

Stuck Sensor Concentrator. 1 1 &-1 6 (All Sen. Cone.) 

Loose Elec. Conn. Sen. Cone. -1 &-2&3&-1 2&-1 3& 14&-1 6  (All Sen. Cone.) 

Dead Sen. Cone. Processor Board 1 1 & 1 6  (All Sen. Cone. Board) 

Stuck Sen. Cone. Processor Board 1 1 &- 16  (All Sen. Cone. Board) 

Elec. Conn. Sen. Processor Cone. Board - 1 &-2&3&-1 2&-1 3& 14&-1 6  (All Sen. Cone. Board) 

PCDU Power Failure 1 7  (All Sen. PCDU) 

Sen. Cone. Unplugged 1 7  (All Sen. Cone.) 

Sen. Cone. Board Removal (Processor) 1 7  (All Sen. Cone. Board) 

Sen. Cone. Board Removal (Interface) 1 1 & 1 6& 1 7  (All Sen. Cone. Board) 

Equipment Vault Stack Collision Regional Anomaly Monitoring Module 

hierarchical faults that affect CA VIS component such as the PCDU or the sensor 
concentrators. 

4.6 Regional Anomaly Monitoring Module (RAMM) 

The Regional Anomaly Monitoring Module (RAMM) is an additional module used to 
detect anomalies that affect regions of the CA VIS system. Several abnormalities or 
operating conditions exist that can induce "change-in-state" behavior in a region of the 
CA VIS system, rather than changes-in-state for individual sensors or the system as a 
whole. These anomalies include the presence of external radiation sources in the CA VIS 
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storage area or a sensor vault pile impacted by a piece of heavy equipment. The module 
is capable of detecting root causes that affect regions of the CA VIS system, rather than 
individual radiation sensors by mapping the behavior of neighboring sensors to form a 
neighborhood score. The neighborhood scores are analyzed to detect and isolate regional 
anomalies. The ability to detect regional faults may help to avoid unnecessary inventory 
checks, thus saving cost and eliminating unnecessary radiation exposure. 

Kernel smoothing is a non-parametric technique used to estimate the probability 
density function of a data set [Wand 1 995] . In this application the data are the radiation 
detector count rates observed at different locations in the storage facility. Kernels are 
used to smooth the discrete measurements resulting in an approximation of the 
underlying radiation field. Kernel smoothing is implemented to detect and identify 
regional radiation disturbances. 

Each radiation sensor is expected to produce a specific count rate that is 
calculated as an average of a series of count rates collected under normal operating 
conditions. The difference between a sensor's actual count rate and its expected count 
rate is called a residual. The residual values of the CA VIS radiation sensors are placed in 
a three dimensional array according to their physical location. Under normal conditions, 
these residuals will have a Gaussian distribution around a mean value of zero and have a 
variance equal to the square root of the mean count rate. 

Kernel smoothing is used to map the behavior of the sensors in close proximity to 
form a neighborhood score. A change in the neighborhood scores for a region of CA VIS 
indicates that the sensors in the region experienced the effect of the same root cause. The 
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maximum of the neighborhood scores will occur near the root cause, enabling the 

location of the anomaly. 

4.6. 1 RAMM Methodology 

The development of the RAMM module involves the implementation of a neighborhood 

system that monitors regions of the CA VIS system for changes in state. It is difficult for 

CA VIS to isolate an anomaly affecting several sensors in a region because CA VIS 

focuses on sensors not their interactions. A neighborhood system features a kernel based 

density estimation technique that reduces the noise or variability of the sensor readings, 

to form neighborhood scores. The neighborhood score for a sensor is calculated based on 

the Euclidean distance between the sensors, the behavior or count rate of the other 

sensors in the warehouse, and a kernel width. Kernel smoothing of the detectors 

residuals results in neighborhood scores near zero unless some abnormality exists in the 

CA VIS system. Recall that the residuals are the difference between the sensor count rate 

and the expected count rate (mean). Therefore, residuals have a mean of zero and a 

variance equal to the square root of the radiation signal mean. Thus, the implementation 

of a neighborhood system allows for the detection of abnormalities that affect regions of 

CA VIS. Figure 4.4 illustrates the process of the RAMM. 

CA VIS collects a count rate for every radiation sensor and the RAMM places the 

residual ( difference from the normal mean) of the count rate in a three-dimensional array 

based on the sensors physical location. The sensors are contained in concrete vaults in 

4x5 sensor arrangements that are then stacked on top of each other. The neighborhood 
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Figure 4.4. Flow Chart of Regional Anomaly Monitoring Module 

score for each sensor is then determined by performing kernel smoothing of the residual 

values in the three dimensional array such that 

X; 

N eighborhoodScore( x) = I, Res( X; ) * K h ( x, X; ) Eq. 4. 12  

where x is the sensor location in question, x; is the sensor location around which the 

kernel is placed, Kh is a kernel function, and Res is the residual of the sensor x;. A 

Gaussian kernel, with magnitude equal to the residual value, is placed at each sensor 

location and the neighborhood score for each individual sensor location is determined by 

summing the contributions from every sensor in the warehouse. Kernel smoothing is 

used to reduce the variance due to the random nature of radioactive decay. Although the 

mean of the residuals is zero, the value of any particular residual at any particular data 

observation can vary between O ± 2<J with 95% confidence. Thus, it is necessary to 

smooth the residuals to force the neighborhood score towards the mean. 
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The kernel width acts as a regularization parameter and must be chosen to 

optimally reduce the variance of the neighborhood function. As the kernel width 

becomes larger, the solution will be smoother and the neighborhood score for every 

sensor will be pushed towards the mean of zero. If the kernel width is small, less 

smoothing (averaging) occurs and the model may overfit the data. As the width goes to 

zero the neighborhood score for each sensor will simply be its residual. Thus, it is 

necessary to determine the optimal kernel width to optimize the variance reduction. In 

this application the optimal kernel width was found to be dependent on the Euclidean 

distance between the sensors in the CA VIS vault pile. 

In the event of some regional anomaly, the residuals of the sensors will smooth to 

a set of neighborhood scores with values larger than zero, which will enable the detection 

and isolation of the origin of the anomaly. Monitoring the maximum value of the 

neighborhood scores will enable regional anomaly detection. The maximum 

neighborhood score should vary around zero in the absence of a regional anomaly and 

increase to some value greater than zero in the presence of a regional anomaly. Thus, 

placing monitoring bands, which are determined experimentally, around the maximum 

neighborhood score enables regional anomaly detection. 

When a regional anomaly is detected, its origin will be in the vicinity of the 

maximum neighborhood score, thus enabling the isolation of the location of the anomaly. 

Three-dimensional plots of the neighborhood scores, with the color in the plot 

representing the neighborhood score, will allow the visualization of the regional 

anomaly's location and the visual image of the anomaly will change with time allowing a 
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moving anomaly to be tracked. The plots generated by the RAMM feature a color 

scaling such that white or no color indicates no regional anomaly and a dark color in a 

region indicates that some regional anomaly is present. 

The three plots generated by the RAMM are: 1 )  the current neighborhood scores, 

2) the neighborhood scores when the maximum neighborhood over a time interval 

occurred, and 3) a time history plot of the five most recent neighborhood scores weighted 

by an exponential function to give more weight to the most recent scores. The plot of the 

current neighborhood scores describes what is currently occurring regionally in the 

CA VIS system. 

The plot of the neighborhood scores when the maximum score occurred is useful 

for locating and keeping record of impacted CA VIS vault stacks. The radiation signal 

spikes induced by collisions are short lived and usually last only one data observation. 

The maximum score plot will preserve the neighborhood scores when the collision 

occurred allowing the impacted vault pile to be identified even after the spiked sensor 

behavior has pasted. 

The time history plot illustrates the past behavior of the neighborhood scores and 

is useful in tracking external radiation sources that may be moving in the CA VIS storage 

area. If the external source is moving the time history plot will contain a "tail" that 

reveals where the source has been and the direction it is traveling. Weighting the five 

most recent sets of neighborhood scores by Eq. 4.13 creates the data plotted in the time 

history plot. 
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5 -t-1 

L NS,e-6 

TimeHistory = -
1=-1 ---

5 -t-1 

L e-6 
t=I 

Eq. 4. 1 3  

In this research o is set to three and NSt 
are the neighborhood scores at the specified time 

interval t, where NS I is the current neighborhood scores, NS2 is the previous 

neighborhood scores, etc. The results and plots generated by the RAMM allow Y- I 2 

personal the ability to visualize changes-in-state of regions of the CA VIS system and 

detect anomalies that affect regions of CA VIS. 
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5 Results 

The CA VIS monitoring system is capable of detecting and isolating CA VIS faults 
including numerous types of sensor failures, component failure, and environmental 
effects. It was tested on several data sets including data sets collected over several 
months of operation at Y- 1 2  and data sets containing induced failures collected at the 
University of Tennessee. An Regional Anomaly Monitoring Module has also been 
developed to investigate the presence of root causes of false alarms for regions of the 
CA VIS system. This module is capable of detecting anomalies that affect regions of the 
CA VIS system such as external radiation sources in the CA VIS storage area and spiked 
sensor vault stacks induced by heavy equipment collisions with the CA VIS storage 
vaults. 

5.1 Data Abnormality Monitoring - Sensor Malfunction 

The following sections contain several examples of the CA VIS monitoring system 
analyzing CA VIS data sets containing some data abnormality for a particular sensor. The 
examples illustrate the ability of the CA VIS monitoring system to detect various RADSiP 
sensor failures that have been found to occur in the CA VIS system. The data sets feature 
twenty independent radiation signals that correspond to a particular sensor concentrator. 
Each data set contains a single sensor failure that may result in a CA VIS alarm or an 
unmonitored state of the SNM. An unmonitored state of the SNM means the CA VIS 
system will not alarm provided the failure does not result in reported count rates outside 
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of a 99% confidence interval. The sensor failures that are shown are I )  Dead RADSiP 

sensor, 2) Stuck RADSiP sensor, and 3) Drifting RADSiP sensor induced by temperature 

extremes. The CA VIS monitoring system is able to detect and isolate each sensor 

malfunction and is able to produce an alternate response to any CA VIS alarm, which will 

alleviate any unnecessary inventory check. 

5.1.1 Sensor Malfunction - Dead Sensor 

The following example illustrates the CA VIS monitoring systems ability to detect and 

isolate a "dead" RADSiP radiation sensor. A dead sensor is a sensor that has experienced 

some failure that results in a repeatedly reported count rate of zero. The root cause of this 

abnormality can be failure of the RADSiP electronics, an unplugged or damage wire 

connection between the RADSiP and sensor concentrator, or a failure of one of the 

components the sensor is connected to in the sensor hierarchy. The data set analyzed 

here was collected at the University of Tennessee and RADSiP sensor I I 3 was 

unplugged from its sensor concentrator at data observation 187 and plugged back into the 

concentrator at data observation 935 to induced the failure. The data was collected at 

five-second intervals for 2 hours and 45 minutes to generate 2000 data observations. The 

described dead sensor data set is presented in figure 5. I .  

The data set shown in figure 5 .1 was analyzed by the CA VIS monitoring system 

for abnormal behavior. In this instance, the data anomaly is obvious from a plot of the 

data. Nonetheless it is necessary for the CA VIS monitoring system to detect and isolate 
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Figure 5.1 .  Dead Sensor Anomaly Data Set 

the failure, as it is impractical to continually visually inspect data collected by CA VIS. 

The data was analyzed by the CA VIS monitoring system to detect any abnormalities in 

the count rates. The warnings and alarms generated by the CA VIS monitoring system are 

presented in table 5. 1 .  

The CA VIS monitoring system was able to detect the dead CA VIS sensors in the 

data set. As discussed the sensor failed at data observation 1 87 and the CA VIS 

monitoring system was able to instantly generate a dead sensor warning. The warning is 

generated because the current count rate feature is in a faulted state. At data observation 

19 1  the CA VIS monitoring system generated a dead sensor alarm. The alarm is 

generated because both the variance of the last five-observation feature and current count 

rate feature are in a faulted state. The dead sensor failure ends at observation 935 when 

the sensor was plugged into the sensor concentrator. The CA VIS monitoring system 

recognized that the sensor malfunction had been corrected and generated a "sensor is no 

longer dead" message. It is necessary for the CA VIS monitoring system to recognize this 
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Table 5.1. CA VIS monitoring system analysis of Dead Sensor Anomaly Data Set 
Ind. Problem Lo2ic 
1 87 Warning: The RADSiP sensor may be dead: 1 1 1 3  Zero count rate for the sensor 
1 9 1  The RADSiP sensor i"s dead: 1 1 1 3  Zero count rate for the sensor for 5 cons. obs. 
935 The RADSiP sensor is no longer dead: 1 1 1 3  The sensors no longer has a zero count rate 

failure as it may result in an unnecessary inventory check of the SNM. The CA VIS 

monitoring system is able to detect and isolate dead sensors and will provide an 

alternative response, which should alleviate the possibility of unnecessary inventory 

checks. It should be noted that dead sensor warnings and alarms will only be generated if 

a radiation signal change-in-state is not correlated with a weight signal change-in-state 

for the corresponding weight sensor in the SNM canister. In the event of a correlated . 

change updates to the CA VIS monitoring system will alarm with a Removal of SNM 

alarms. 

5.1.2 Sensor Malfunction - Stuck Sensor 

The following example illustrates the CA VIS monitoring systems ability to detect and 

isolate a "stuck" RADSiP radiation sensor. A stuck sensor is a sensor that has 

experienced some failure that results in a repeatedly reported non-zero count rate. The 

data set analyzed here is a 2,000 data observations portion of a data set collected at Y- 1 2  

from May 3 ,  1 999 at 14:00:56 to January 6, 2001 at 1 2:2 1 :20 with a one-hour update rate. 

The CA VIS data sets collected at Y-12 feature a one-hour update rate to limit the size of 

the data set. It should be noted that the techniques used by the CA VIS monitoring would 

require a quicker update rate to ensure the safe storage of the SNM. With this long of an 

update rate the SNM could be removed for a few hours before the system would detect 
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the induced change-in-state of the SNM. If an individual knew the time CA VIS logged 

the data they could completely remove the SNM shortly after the attribute data was 

logged and have a full hour to flee before CA VIS or the CA VIS monitoring system 

would alarm. An update rate of around one minute is more appropriate to securely 

monitor the SNM. Nonetheless, the CA VIS monitoring system is capable of detecting 

and isolating sensor malfunction in the data set. 

It is not possible to know what root cause induced the abnormal behavior in the 

radiation signal because the data set were collected at Y- 1 2; however testing at UT has 

found that stuck sensor behavior can be caused by failure of one of the components the 

sensor is connected to in the sensor hierarchy or electronic failure of the RADSiP. This 

particular data set contains only one stuck sensor thus the root cause cannot be a 

component failure. In the data set, sensor 1 1 7 becomes stuck at about data observation 

400 and is repaired or the failure ceases near data observation 1 350. The described stuck 

sensor data set is presented in figure 5.2. 

The data set shown in figure 5.2 was analyzed by the CA VIS monitoring system 

for abnormal behavior. The warnings and alarms generated by the CA VIS monitoring 

system are presented in table 5 .2. 

The CA VIS monitoring system was able to detect the stuck CA VIS sensor in the 

data set that became stuck at data observation 3 7 1 . The sensor stuck alarm was generated 

because the variance of the last five data observations feature was in a faulted state while 

Table 5.2. CA VIS monitoring system analysis of Stuck Sensor Anomaly Data Set 

Ind. Problem Loeic 

37 1 The RADSiP sensor is stuck: 1 1 7 The sensor had the same count rate for 5 cons. obs. 

1 365 The RADSiP sensor is no longer stuck: 1 1 7 The sensor no longer has the same count rate 
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Figure 5.2. Stuck Sensor Anomaly Data Set 

the current count rate feature was not faulted. The CA VIS monitoring system recognized 

the failure had been corrected at data observation 1 365 when the sensor was repaired or 

ceased to fail, and generated a "no longer stuck" message for the sensor. Due to a lack of 

variance testing in the original CA VIS system, a stuck sensor failure would result in an 

unmonitored state for the SNM. However, the CA VIS monitoring system is able to 

detect and isolate the stuck sensors, suggest a response of component repair of 

replacement, and should alleviate the possibility of an unmonitored state of the SNM. 

5.1.3 Sensor Malfunction - Drift in Signal Induced by Temperature Extremes 

The following example illustrates the CA VIS monitoring system's ability to detect and 

isolate a "drift" in the RADSiP radiation signal. Drifts in the RADSiP radiation signals 

can be induced by extreme environmental conditions, or RADSiP electronic failure. The 

drift presented in this example is an increase in the mean of the signal induced by 
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extreme environmental conditions. The data set analyzed here is a portion of a data set 

collected with the UT environmental chamber. The RADSiP sensor 1 1 4 was exposed to 

a varying temperature of 90- 1 40 degrees Fahrenheit that induced a mean shift up 

behavior in the sensors radiation signal . The analyzed data set represents four hours and 

IO  minutes of testing with an update rate of 5 seconds to generate a total of 3000 data 

observations. Several RADSiP sensors were exposed to the same conditions as sensor I 

1 4, however due to the peculiar response of the sensors to temperature variation it is the 

only sensor in the set that demonstrated a temperature dependence. The described 

drifting sensor data set is presented in figure 5 .3. 

A visual inspection of the data set reveals that sensor 1 1 4 begins to experience a 

shift up in mean near data observation 900 that remains throughout the set. The count 

increases from a mean of about 70 at the beginning of the set to a mean of near 90 at the 

end of the set. The data set shown in figure 5 .3 was analyzed by the CA VIS monitoring 

system for abnormal behavior. The warnings and alarms generated by the CA VIS 

monitoring system are presented in table 5.3. 

The CA VIS monitoring system was able to detect the drifting CA VIS sensor in 

the data set. However, it was not possible for the system to diagnose the root cause of 

temperature-induced failure because only one RADSiP sensor exhibited the abnormal 

behavior and temperature data was not presented to the system. Updates to the CA VIS 

monitoring system may incorporate environmental data in the working memory 

Table 5.3. CA VIS monitoring system analysis of Drifting Sensor Anomaly Data Set 

Ind. Problem Lo!!ic 

1 354 Warning: The RADSiP sensor may be drifting: 1 ] 4 The sensor is experiencing SPRT alarms 

1 369 The RADSiP sensor is drifting: 1 ] 4 The sensor is experiencing SPRT alarms 
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Figure 5.3. Drifting Sensor Anomaly Data Set 

of the system. In the example, a drifting sensor warning was generated at data 

observation 1 354 and the warning was upgraded to an alarm at data observation 1 369. A 

drifting sensor warning is generated when the SPRT mean shift features are faulted for 

either the last 100 or 1000 data observations. The warning is raised to alarm status when 

the SPRT mean shift features are faulted for both the last 1 00 and 1000 data observations. 

The visual inspection of the radiation signal revealed that the drift began near data 

observation 900, however it was not detected by the CA VIS monitoring system for 

approximately 400 data observations or about 30 minutes. The time of detection can be 

attributed to the magnitude of the drift in the data, the mean and standard deviation of the 

non-drifting radiation signal, and the set value of the SPRT shifted mean hypothesis. 

Before the drift began, sensor 1 1 4 radiation signal had a mean of approximately 70, and 

because the signal is a Poisson a standard deviation of ..fio .  The SPRT mean shift 

hypothesis is set to the mean plus or minus three standard deviations; thus when the mean 

of a drifting data sequence is equal to the original mean plus or minus 1 .5 standard 
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deviations the SPRT will alann [Harrison 04]. In this example, the SPRT should alarm at 

a count rate 70 + 1 .5 * .J=io = 82.55 . Visual inspection of the data reveals that the 

magnitude of the drift resulted in a drifting count rate mean of approximately 83 at about 

data observation 1400. As expected, this is near the data observation the CA VIS 

monitoring system detects the drifting sensor. Thus, the time of drift detection depends 

magnitude of the drift, the statistical properties of the data stream before the drift occurs, 

and the set value of the mean shift hypothesis. 

The count rate for drifting sensors may fall outside of a 99% confidence interval 

resulting in CA VIS alarms and unnecessary inventory checks of the SNM. The ability of 

the CA VIS monitoring system to detect drifting CA VIS sensors should alleviate the 

possibility of unnecessary inventory checks by providing Y-12 personal with an alternate 

response to CA VIS alarms. 

5.2 Data Abnormality Monitoring - Component Failure 

The following sections contain several examples of the CA VIS monitoring system 

analyzing CA VIS data sets containing some component failure. The examples illustrate 

the ability of the CA VIS monitoring system to detect component failures that are known 

to occur in the CA VIS system. The data sets feature twenty independent radiation signals 

that correspond to a particular sensor concentrator. Each data set contains a single 

component failure that results in a data abnormality for each RADSiP sensor that is 

common to the component. The component failures that are shown are 1 )  stuck sensor 

concentrator, and 2) a failed sensor concentrator communication board. The CA VIS 
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monitoring system is able to detect and isolate each component failure and is able to 

produce an alternate response to any CA VIS alarm generated due to the failure, which 

will alleviate any unnecessary inventory check. 

5.2.1 Component Failure - Stuck Sensor Concentrator 

The following example illustrates the CA VIS monitoring system's ability to detect and 

isolate a stuck sensor concentrator component failure. A stuck sensor concentrator 

failure consists of the RADSiP sensors common to a sensor concentrator repeatedly 

reported some non-zero count rate. The data set analyzed here is a 10,000 data 

observations portion of a data set collected at Y-12 from May 3 ,  1999 at 14:00:56 to 

January 6, 2001 at 12:21 :20 with a one-hour update rate. As previously discussed, a one­

hour update rate is too long and an update rate of around one minute is more appropriate 

to securely monitor the SNM. Nonetheless, the CA VIS monitoring system is still capable 

of detecting and isolating the component failures that occur in the data set. 

It is not possible to know what root cause induced the abnormal behavior in the 

radiation sensors common to this particular sensor concentrator because the data set was 

collected at Y-12. However, because each sensor common to the sensor concentrator and 

only these sensors failed it can be assumed that the malfunction existed in the sensor 

concentrator. The stuck sensor concentrator data set is presented in figure 5.4. 

A visual inspection of the data reveals an obvious fault where all the sensors count rates 

stick near data observations 8700. The data set shown in figure 5.4 was analyzed by the 
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Figure 5.4. Component Failure Stuck Sensor Concentrator Data Set 

CA VIS monitoring system for abnormal behavior. The warnings and alarms generated 

by the CA VIS monitoring system are presented in table 5.4. 

The CA VIS monitoring system experienced several stuck detector alarms for 

various sensors prior to the common sensor concentrator communication failure at data 

observation 8725 . However, in each of these instances the detector returned to normal 

behavior after a short period of time. These stuck detectors are not visible in figure 5 .4 

due to the amount of data and also due to the short length of time the stick occurs. As 

previously discussed, this faulty behavior for several of the sensors has been determined 

to be a precursor to the sensor concentrator failure that occurred later. At data 

observation 8725 the sensor concentrator experienced a stick that is detected by the 

monitoring system. The CA VIS monitoring system was able to detect the stick because 

the variance of the last five-observation feature was in a faulted state and the current 
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Table 5.4. CA VIS monitoring system analysis of Sensor Concentrator Failure Da1ta 
Index Problem Logic 

5649 The RADSiP sensor is stuck: 1 I 6 The sensor had the same count rate for 5 cons. obs. 
5650 The RADSiP sensor is no longer stuck: I I 6 The sensor no longer has the same count rate 
5853 The RADSiP sensor is stuck: I I 1 2  The sensor had the same count rate fo r  5 cons. obs. 
5854 The RADSiP sensor is no longer stuck: I I 1 2  The sensor n o  longer has the same count rate 
66 13  The RADSiP sensor is stuck: I I 1 2  The sensor had the same count rate fo r  5 cons. obs. 
66 14 The RADSiP sensor is no longer stuck: I I 12  The sensor no longer has the same count rate 
7744 The RADSiP sensor is stuck: I I 1 7  The sensor had the same count rate for 5 cons. obs. 
7745 The RADSiP sensor is no longer stuck: I I 1 7  The sensor n o  longer has the same count rate 
8262 The RADSiP sensor is stuck: I I 2 The sensor had the same count rate for 5 cons. obs. 
8264 The RADSiP sensor is no longer stuck: I I 2 The sensor no longer has the same count rate 
87 14  The RADSiP sensor i s  stuck: I I 3 The sensor had the same count rate for 5 cons. obs. 
87 1 6  The Sensor Cone. Process. Board 1 i s  stuck: 1 I The Sen. Cone. board sensors have the same counts for 5 cons. obs. 
8720 The Sensor Cone. Process. Board 4 is stuck:  1 1 The Sen. Cone. board sensors have the same counts for 5 cons. obs. 
8724 The Sensor Cone. Process. Board 3 is stuck: 1 1 The Sen. Cone. board sensors have the same counts for 5 cons. obs . .  
8725 The Sensor Cone. is stuck: I I The Sen. Cone. sensors have had the same counts for 5 cons. obs. 
9 1 43 The Sensor Cone. is no longer stuck: 1 1 The Sen. Cone., sensors no longer have the same count rate 
9 147 The Sensor Cone. Process. Board 4 is no longer stuck: I 1 The Sen. Cone. board sensors no longer have the same counts 
9 1 47 Warning: The RADSiP sensor may be drifting: I I 1 8  The sensor i s  experiencing SPRT alarms 
9 1 5 1  The Sensor Cone. Process. Board 3 is no longer stuck: I I The Sen. Cone. Board sensors no longer have the same counts 
9 1 5 1  Warning: The RADSiP sensor may be drifting: I I 1 2  The sensor i s  experiencing SPRT alarms 
9 1 52 The Sensor Cone. Process. Board 2 is no longer stuck: I I The Sen. Cone. Board sensors no longer have the same counts 

count rate feature was in an unfaulted state for every sensor common to the sensor 

concentrator. As previously discussed, this type of abnormality would go undetected by 

previous monitoring technique, due to a lack of variance testing. Thus in all likelihood, 

this CA VIS component failure would go unnoticed, and the SNM unmonitored, while the 

failure existed. The stuck sensor concentrator returns to normal operation at data 

observation 9152. 

5.2.2 Component Failure - Failed Sensor Concentrator Communication Board 

The following example illustrates the CA VIS monitoring systems ability to detect and 

isolate a failed sensor concentrator communication board. A failed communication board 
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will result in a zero count rate for every sensor common to the board. The failure 
presented in this example was simulated at the University of Tennessee by removing 
communication board 1 from the sensor concentrator at data observation 2 1 5  and 
replacing the board at data observation 1067. Removing board 1 resulted in the count 
rates for sensors 1 - 1 0, which are common to the board, going to and remaining at zero. 
The data were collected at five-second intervals for 2 hours and 45 minutes to generate 
2000 data observations. The described failed communication board data set is presented 
in figure 5 .5 .  

A visual inspection of the data reveals ten of the sensors count rates go to zero 
near data observations 200 and return to normal operation near data observation 1 000. 
The data set shown in figure 5 .5 was analyzed by the CA VIS monitoring system for 
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Figure S.S. Component Failure Dead Communication Module Data Set 
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abnormal behavior. The warnings and alarms generated by the CA VIS monitoring 

system are presented in table 5.5. 

The CA VIS monitoring system was able to detect the failed communication board 

and identified it as dead because the count rates for every sensor common to the board 

were zero during the failure. The communication board failed at data observation 215 

and the CA VIS monitoring system was able to instantly generate a dead communication 

board sensor warning. The warning was generated because the current count rate feature 

was faulted for every sensor common to the board. At data observation 219 the CA VIS 

monitoring system generated a dead communication board alarm. The alann is generated 

because both the variance of the last five-observation feature and current count rate 

feature were in a faulted state for every sensor common to the board. The dead 

communication board failure ends at observation 1068 when the communication board is 

plugged back into the sensor concentrator. The CA VIS monitoring system recognized 

that the board malfunction has been corrected and generated a "communication board is 

no longer dead message." It is necessary for the CA VIS monitoring system to recognize 

this type of failure as board malfunctions can occur and were frequently observed in the 

Y - 12 data sets. These board failures would generate numerous CA VIS alarms and may 

result in unnecessary inventory checks of the SNM. The CA VIS monitoring system is 

Table 5.5. CA VIS monitoring system analysis of Failed Communication Module 
Ind. Problem Logic 

2 1 5  Warning: The Sensor Cone. Comm. Board 1 may be dead: 1 1 Zero count rate for all sensors common to the board 

2 1 9  The Sensor Cone. Comm. Board 1 is dead: 1 I Sensors common to board zero count rate for 5 cons. obs. 

1 068 The Sensor Cone. Comm. Board 1 is no longer dead: I I Sensors common to the board no longer have a zero count 
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able to detect and isolate board failures and will provide an alternative response, which 
should alleviate the possibility of unnecessary inventory checks. 

5.3 Regional Anomaly Monitoring Module 

The Regional Anomaly Monitoring Module (RAMM) is a module that detects region 
anomalies in the CA VIS system using a kernel smoothing technique. The following 
sections contain results from the RAMM including I )  a demonstration of the maximum 
neighborhood score as a fault symptom, 2) examples of kernel smoothing in two and 
three dimensions with and without an anomaly present, 3) the RAMM detection and 
isolation of a impacted CA VIS sensor vault pile, and 4) the RAMM detecting and 
tracking an external radiation source in the CA VIS storage area. 

The kernel function featured in the RAMM is a Gaussian kernel whose shape is 
defined by the kernel width parameter. Optimization of the kernel width is performed 
though experimentation, and depends on the physical distance between the sensors and 
the various vault stacks. In this research, the kernel that produced the desired result had a 
kernel width of 2.5 .  However, the desired result is subjective, thus the optimal kernel 
width must be optimized for the application or at implementation. 

5.3.1 Kernel Smoothing Neighborhood Score as Fault Symptom 

The result of the RAMM is a collection of neighborhood scores at various locations in a 
three-dimensional array representing the CA VIS system. The values of these 
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neighborhood scores should center near zero given no abnormality in the system. In the 
event of some abnormality, the RAMM will smooth the residual values to neighborhood 
scores greater than zero. Thus, the values of the neighborhood scores can be used as a 
fault symptom. Figure 5 .6 i llustrates the value of the maximum neighborhood score at 
each time interval during a simulation of the RAMM. The simulation featured an 
external source entering the CA VIS storage area for the time interval 1 0  to 25 . The array 
representing the CA VIS storage area had dimensions of [ 1 2  x 1 5  x 5] which would 
correspond to 900 storage containers. 

The value of the maximum neighborhood score increases to some larger value 
when the external source is in the CA VIS storage area. The magnitude of this increase 
depends on the strength of the external source. This result demonstrates that the 
neighborhood scores 
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can be used as a fault symptom to detect the presence of an abnormality affecting a 
region of the CA VIS system. In addition, plots of the neighborhood scores, which are 
described in the following sections, enable the visualization of the local anomalies. 

5.3.2 Kernel Smoothing in Two Dimensions 

The RAMM result is introduced by the following plots that illustrate kernel smoothing in 
a two-dimensional plane such as what would be seen with an unassembled sensor vault 
stack. The residual of the radiation sensor will be in the range of 0 ± 3.Jcr with 99% 
confidence. Kernel smoothing the residual should result in neighborhood scores close to 
zero given no anomaly because the sensor residuals mean is zero. Figure 5 .  7 illustrates 
the smoothing of actual sensor residuals in two-dimensions without an abnormality 
present. The array representing the CA VIS storage area has dimensions of [20 x 1 6  x 1 ]  
which would correspond to 320 storage containers. To assist in visualization, the figure 
is shown in three-dimensions with the third dimension representing the neighborhood 
score. 

The RAMM is able to transform the rigid plot of the residual data shown at the 
top of figure 5 .7, into the smooth surface plot of the neighborhood scores located on the 
bottom of the figure. It is not possible to determine if an anomaly is present or not from 
the residual plot because the residual values range from -20 to 20. This variation is 
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natural as the residual values can vary by 3..Jcr with 99% confidence. However, it can 
easily be seen that no anomaly is present from the plot of the neighborhood scores that is 
smooth. As discussed, the surface is smooth because the mean residual of the CA VIS 
regions center about zero because no data anomaly is present. 

CA VIS collected data sets that contained regional anomalies were not available 
because the sensor locations were not known in the Y- 12  collected data sets, and 
insufficient equipment was available at UT to produce these sets. Therefore, data sets 
featuring abnormalities had to be fabricated in order to test the RAMM system. The data 
set fabricated for this example had dimensions of [20 x 1 6  x 1 ]  which would correspond 
to 320 storage containers. To simulate the abnormality in the set, a fabricated external 
radiation source was placed near the sensor at coordinate [5, 5, 1 ] . The fabricated source 
strength was such that it increased the residual value of this sensor by a factor of 20. The 
external source affected the other sensors in the data set by increasing their values by 
20 * ( ;, ) where R is the Euclidean distance from the sensor to the external source. The 
described fabricated data set is shown at the top of figure 5 .8  and the result of the RAMM 
kernel smoothing of the data is shown at the bottom of the figure. 

RAMM transforms the rough residual plot on the top of figure 5 .8 into the smooth 
plot of the neighborhood scores located on the bottom; resulting in a clearly visible 
external source. Again, it is difficult to detect the data anomaly from the plot of the 
residuals, but the external radiation source is easily seen in the plot of the neighborhood 
scores. In addition, the RAMM is able to precisely determine the location of the external 
radiation source by determining the location of the maximum neighborhood score. 
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5.3.3 Kernel Smoothing in Three Dimensions 

The following plots illustrate kernel smoothing in three-dimensions, which represents the 

sensor vault stacks assembled on top of each other. As previously discussed, the residual 

values will range between 0 ± 3-Jci with 99% confidence, and kernel smoothing the 

residual data with no anomaly should result in neighborhood scores close to zero. Figure 

5.9 illustrates the smoothing of actual sensor residuals in three-dimensions without an 

abnormality present. The array representing the CA VIS storage area has dimensions of 

[ 15 x 15 x 5] which would correspond to 900 storage containers. The X, Y, and Z 

dimensions represent the location of the neighborhood score and the value of the 

neighborhood score is represent by the color in the figure. 

The RAMM transforms the residual sensor data, shown at the top of figure 5.9, to 

produce the smoothed data plotted in the bottom of the figure. The congested plot on the 

residual values ranges from -27 to 30. It is impossible to determine if an anomaly is 

present from the residual plot because of the wide range of residual values. However, 

these large residual values do not occur repeatedly in a region and are thus smoothed to 

neighborhood scores of near zero represented by the lack of color shown in the smoothed 

plot. This lack of color signifies the neighborhood scores center about zero, which 

indicates that no external source is present in the system. 

Again, because CA VIS collected data sets containing anomalies were not 

available so it was necessary to fabricate data sets in order to test the RAMM system. 

The data set fabricated for this example had dimensions of [ 12 x 15 x 5] which would 

correspond to 900 storage containers. To simulate the abnormality in the set, a fabricated 
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external radiation source was placed near the sensor at coordinate [2, 2, 5] .  As before, 
the fabricated source increased the residual value of the sensor by twenty and increased 
the residual values of the other sensors in the set according to a ( ;, ) relation. The 
described fabricated data set is shown at the top of figure 5 . 1 0 and the result of the 
RAMM kernel smoothing of the data is shown at the bottom of the figure. 

The RAMM transforms the rough residual plot on the top of the figure 5 . 1 0 to the 
smooth plot of the neighborhood scores located on the bottom, resulting in a clearly 
visible external source. Again, it is difficult to detect the data anomaly from the plot of 
the residuals, but the external radiation source is easily seen in the plot of the 
neighborhood scores. Also, the RAMM is able to precisely determine the location of the 
external source by determining the location of the maximum neighborhood score. 

5.3.4 RAMM Monitoring - Collision Induced Spike Vault Pile 

The following example illustrates the ability of the RAMM to detect and isolate the 
location of vault stacks that have experienced spikes in their sensors count rates due to a 
collision with a heavy piece of machinery. The CA VIS storage area is a functioning 
warehouse that may have moving heavy equipment. It is possible that forklifts or other 
types of machinery moving in the CA VIS storage area may collide with one of the 
CA VIS sensor vault stacks resulting in a physical shock to each sensor in the stack. As 
previously discussed, the RADSiP sensors featured in the CA VIS system are sensitive to 
physical shock. When impacted the count rate of the sensor spikes for one and only one 
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data observation. The magnitude of these spikes varies and can be anywhere between 
30% to 1 00% increase in the reported count rate. These collision induced spikes 
represent a change-in-state of the radiation signals in the vault stack, and may generate 
CA VIS alarms for the sensors that may result in inventory checks. 

The RAMM can alleviate the possibility of unnecessary inventory checks due to 
collision induced CA VIS alarms, by detecting the collision. Because the spikes will be 
generated in the sensors common to the vault stack, the neighborhood scores for the 
region near the vault stack will dramatically increase for the one data observation in 
which the spike is recorded. These neighborhood scores will be recorded in the 
maximum score plot generated by the RAMM creating a record of the collision and an 
alternative hypothesis that can be inspected before an inventory check is performed. 

CA VIS collected data sets of collision induced spike behavior were not available 
so the sets were fabricated. The data set fabricated for this example had dimensions of 
[ 1 6  x 20 x 8] which would correspond to sixteen-vault stacks in a 4 x 4 arrangement and 
2560 storage containers as each vault stack contains 20 sensors in a 4 x 5 arrangement. 
To simulate the collision in the set, the count rate of each sensor common to the impacted 
vault stack was increase by 100%, which increased the value of the residual by the count 
rate. In this example, the collision was simulated for vault stack [2 x 2], which is one of 
the vault stacks in the middle of the arrangement. The described fabricated data set is 
shown at the top of figure 5 . 1 1 and the result of the RAMM kernel smoothing of the data 
is presented in the maximum neighborhood score plot shown at the bottom of the figure. 
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The RAMM transforms the residual plot on the top of figure 5 . 1 1 into the smooth plot 
of the neighborhood scores located on the bottom; resulting in a clearly visible data 
anomaly that is the impacted vault stack. The large neighborhood scores for the sensors 
common to the middle vault stack suggest that the anomaly originated from the stack. 
The RAMM records the impact in the maximum neighborhood score plot and is able to 
precisely determine the location of the impacted vault stack with zero error. Figure 5 . 1 1 
is a portion of an impacted sensor vault simulation in which the collision was simulated 
at time interval three. The entire simulation including the maximum neighborhood score 
plot, the current residual plot, and the time history plot can be seen in appendix A. 

5.3.5 RAMM Monitoring - Tracking of External Radiation Source 

The following example illustrates the ability of the RAMM to track an external radiation 
source as it travels in the CA VIS storage area. The CA VIS storage area is a functioning 
warehouse in which radioactive material is frequently being moved. These external 
radiation sources may be detected by the CA VIS system causing an alarm in the region of 
the warehouse where the external radiation source is located. The RAMM can detect and 
track the location of external radiation sources and may alleviate the number of 
unnecessary inventory checks performed. 

CA VIS collected data sets containing moving external radiation sources were not 
available, thus it was necessary to fabricate data sets in order to test the RAMM system. 
The data array fabricated for this example had dimensions of [ 1 6  x 20 x 8] which would 
correspond to 2560 storage containers. To simulate the abnormality moving in the set, a 
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fabricated external radiation source was placed in the array at time index 3 at coordinate 

[ 1, 1, 5] and moved randomly in the z direction along a set path towards the opposite x-y 

planar comer of the array until the simulation ended at time index 10. The fabricated 

source increased the residual value of the sensor by seventy-five and increased the 

residual values of the other sensors in the set occurring to a ( ;, ) relation. The 

described fabricated data at time index 9 is shown at the top of figure 5.12, the time 

history plot result of the RAMM kernel smoothing of the data is shown in the middle of 

the figure, and a rotation that shows a top view of the time history plot is shown at the 

bottom of the figure. 

The RAMM transforms the residual plot on the top of figure 5 .12 to the smooth 

time history plot of the neighborhood scores located in the middle plot; resulting in a 

clearly visible external source. Recall that the time history plot is a combination of the 

five most recent neighborhood scores weighted by an exponential function to give more 

weight to the most recent scores. The time history plot illustrates the past behavior of the 

neighborhood scores and contains a "tail" that reveals where the source has been and the 

direction it is traveling. The bottom plot in figure 5.12 is a top view of the time history 

plot that further demonstrates the tail in the time history plot. Figure Appendix A 

contains the residual plots and the time history plot produced by the RAMM for the entire 

simulation. 

The RAMM determines the location of the external radiation source by locating 

the maximum neighborhood score. Figure 5 .13 is a plot of the magnitude of the error in 

the RAMM predicted location of the external radiation source for the simulation. 
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The RAMM was very successful at locating the external radiation source moving in 

the CA VIS storage area during the simulation. The average error of the prediction was 

0.97 in sensor units and the maximum error of 1 .  75 occurred at the beginning of the 

simulation when the location of the external source was at the edge of the array. The 

higher error at the edges is expected, as kernel-smoothing techniques are susceptible to 

edge effects due to reduced amounts of data at the boundaries. 
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6 Conclusions, Contributions, and Recommendations for Future 

Work 

6.1 Conclusions 

The CA VIS monitoring system was developed as a fault detection and isolation system to 

monitor the CA VIS system at the Y-12 National Security Complex. CA VIS is an 

integrated package of sensors that continually monitors the physical attributes of special 

nuclear material at Y-12. The CA VIS system is subject to several types of failures such 

as environmental effects and component failure. The CA VIS monitoring system was 

able to improve the reliability of CA VIS by monitoring the system for failures. The 

monitoring was performed using the sequential probability ratio test, other key feature 

extraction algorithms, and the fault detection and isolation expert system. 

The SPRT and feature extraction system mined the necessary information from 

the radiation signal to determine the current state of the CA VIS system. That data acted 

as the working memory for the expert system. The feature extraction module was the 

work of T Jay Harrison presented in his thesis "The Sequential Probability Ratio Test 

(SPRT) in Feature Extraction and Expert Systems in Nuclear Material Management 

[Harrison 04]." 

The expert system detected and isolated all pre-enumerated faults that may occur 

in the CA VIS system by analyzing the data from the feature extraction module. Failures 

were detected by comparing the numerical values of extracted features to a set of 

tolerances. The expert system rule base knowledge was applied to detected failures and 
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the system isolated the root cause of the failure. Thus, the expert system was able to 

reduce the alarm response cost by categorizing the alarms generated by the CA VIS 

system based on its knowledge base and suggesting alternate explanations for the alarm. 

If implemented, the FDI system can reduce operational costs by reducing the number of 

unnecessary inventory checks and minimizing other responses. 

The Regional Anomaly Monitoring Module was developed as an additional fault 

detection module to monitor regions of the storage area for changes in state. The module 

enabled the detection of external radiation sources and collisions between equipment and 

CA VIS vault stacks. The module used a kernel smoothing technique to smooth the 

sensor residuals based on their proximity to one another. The smoothing resulted in a 

parameter referred to as the neighborhood score that can be monitored as a fault 

symptom. An abnormal increase in the neighborhood scores for a region of CA VIS 

indicates a common root cause such as the presence of an external radioactive source. 

Also, the modules results were plotted in a three-dimensional mapping that represented 

the regional behavior of the storage area. 

The diagnostic system was capable of monitoring the condition of the CA VIS system 

and could perform system prognosis that resulted in early warning of component failures. 

If employed, its operation could allow the implementation of economical condition-based 

maintenance practices rather than more expensive reactive maintenance. The 

combination of CA VIS and its monitoring system allows for the safe, reliable, and 

economical monitoring of SNM. 
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6.2 Contributions 

The primary contribution of this work to the field of nuclear material management is the 

demonstration of an artificial intelligence expert system to monitor a SNM security 

system. The research exhibits how an expert system, paired with a SPRT base feature 

extraction module, is capable of diagnosing root causes of abnormality in a large nuclear 

material management system. 

The kernel smoothing method presented in this work has wide contributions as it 

can be applied to any detection system featuring multiple sensors in a well-defined 

lattice. In these systems, kernel smoothing can be used to determine the underlying 

behavior of the sampled variable in the system. One such application may be the 

proposed Homeland Security systems that feature multiple radiation sensors monitoring 

activities in large cities. In these systems, sensors are placed throughout metropolitan 

areas to monitor for radioactive materials that may be contained in bombs. Due to the 

random nature of radioactive decay, the radiation signal of the sensors will center about 

some mean value with a certain deviation, which makes it difficult to locate the origin of 

the radioactive material. The kernel smoothing methods presented here could be applied 

to smooth the sensor data to determine the underlying radiation behavior in the sensor 

lattice and thus locate the origin of the radiation signal. 
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6.3 Future Work 

The future work of this project involves the integration of the CA VIS weight sensors into 

the developed system. This will require an analysis of failure effects, the identification of 

features and integration into the CA VIS monitoring system rule base knowledge. 

Once the CA VIS weight sensors are integrated and optimized, the developed 

system may be implemented at Y- 1 2. Implementation of the system will require adapting 

the rule base knowledge to any variation between the CA VIS systems at Y- 1 2  and UT. 

Also, the kernel width in the RAMM will require optimization according to the physical 

distance between the sensors and the various vault stacks. 

Future work may also include expansion of the expert system rule base 

knowledge to incorporate currently unknown fault scenarios. If additional knowledge of 

the CA VIS system is gained, or if additional components are incorporated into the 

system, the rule base knowledge should be updated to account for these changes. 

Additionally, modification of the detection threshold tolerances will make the FDI system 

more or less sensitive to changes-in-state as needed. The optimal value for the thresholds 

may be different depending on need as the values presented in this thesis are 

experimentally and empirically derived and set. 
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Appendix 

This appendix contains the coding for the FDI system. This includes the scripts and 

functions necessary to operate the expert system, and several scripts and function that run 

a demonstration of the RAMM. 

Expert System Code, CA VIS monitoring system script 

This script initiates and runs the CA VIS monitoring system. 

fprintf('\n\nWelcome to Eskimo: The CA VIS monitoring system\n\n'); 
warning off MA TLAB:divideByZero 
warning off MATLAB:m_ warning_or_and_precedence 
Data_Choice = input('Do you wish to load Fabricated Data or Y- 1 2  Data ( I  :Fab, 2 :Y- 1 2) \n'); 
Location = input('ls the program running on the UTK Network( 1 ), Josephs House(2), or elsewhere(3): \n'); 
if Location = 1 

if Data_Choice = 1 
fprintt'{'Available Data Files to be loaded\n'); 
dir('\\nepc 1 26\Y- 12\Fab_Data\') 
data_set = input('lnput the data set you wish to run: ','s'); 
eval(['load \\nepc 1 26\Y- 1 2\Fab_Data\',data_set]); 

end 
if Data_Choice == 2 

fprintt'{'Available Data Files to be loaded\n'); 
dir('\\nepc 1 26\Y- 12\Y- 1 2_Data\') 
data_set = input('lnput the data set you wish to run: ','s'); 
eval(['load \\nepc 126\Y- 12\Y- 1 2_Data\',data_set]); 

end 
elseif Location == 2 

if Data_Choice = 1 
fprintt'{'Available Data Files to be loaded\n'); 
dir('C:\Y- 1 2\Fab_Data\') 
data_set = input('Input the data set you wish to run: ','s'); 
eval(['load C:\Y- 1 2\Fab_Data\',data_set]); 

end 
if Data Choice = 2 

fprintt'{'Available Data Files to be loaded\n'); 
dir('C:\ Y- 1 2\ Y- l 2_Data\') 
data_set = input('Input the data set you wish to run: ','s'); 
eval(['load C:\Y- 1 2\Y- l 2_Data\',data_set]); 

end 
else 

fprintf('The only available data files are in the current directory\n'); 
dir • .mat 
data_set = input('lnput the data set you wish to run: ','s'); 
eval(['load ',data_set]); 

end 
figure( ) )  
plot(dets) 
title('Data set to be analyzed by Eskimo'); 
xlabel('Data Observation');ylabel('Activity'); 
ch l = ddeinit('excel','featextexcel/Counts'); 
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ch2 = ddeinit('excel','featextexcel/FeatureExt'); 
ch3 = ddeinit('excel','featextexcel/ExpSys'); 
ch4 = ddeinit('excel','featextexcel/Faults'); 
ch5 = ddeinit('excel','featextexcel/lnd50'); 
ch6 = ddeinit('excel','featextexcel/ldentification'); 
ch7 = ddeinit('excel','featextexcel/ldentificationNew'); 
%Define variables for the state of the state of the system 
PCDUQuan = I ;  %input('Enter the number of PCDU in the system : '); 
SenConQuan = I ;  %input('Enter the number of Sensor Concentrators in the system : '); 
index=0; 
clear RADSiPNum state previousstate; 
for i = I : PC DU Quan 

for j = I :SenConQuan 
for k = 1 :20 

index=index+ I ;  
RADSiPNum(index,:) = [ i  j k]; 
state(index,:) = [i j k]; 
previousstate(index,:) = [i j k]; 

end 
end 

end 
RADSiPNum=RADSiPNum'; 
state = state'; 
state(4:20, :) = 0; 
previousstate = previousstate'; 
previousstate(4:20, :) = 0; 
ConSignFault = zeros( 1 ,20); 
faultindex = I ;  
ProbExclnd = 1 ;  
Problem = {'0' '0' } ;  
PreProblem = {'0' '0' } ;  
Logic = f0' } ;  
Prob Mat = zeros(30,9);ProbMat(3, I ) = l ;ProbMat(4: 10, 1  : 2 )  = I ;  
I = [ones(20, I )  ones(20, I )  ( I  :20)'];ProbMat( I I :30, I : 3 )  = I ;  
PreProbMat = ProbMat; 
ProbMatOrg = ProbMat; 
PExlnd = I ;  
offset = 0; 
for indexa = I :length(dets); 

indexb = indexa + offset; 
H = datestr(now); 
data = round(dets(indexa,: )); 
k = indexa + 2 + offset; 
j = nurn2str(k); 
posit I = ['r' j 'c I '] ;  
posit2 = ('r' j 'c2']; 
posit3 = ['r' j 'c3:r' j 'c22']; 
% Write fabricated data 
re = ddepoke(ch 1 ,posit l ,H( l : 1 2)); 
re = ddepoke(ch I ,posit2,H( 1 3 :20)); 
re = ddepoke(ch l ,posit3 ,data); 
% Perfonn reading/writing 
for sens = I :20 

mu = mus(sens); 
featexpdat2(k,mu,sens,ch 1 ,ch2,ch3,ch5); 

end 
%Call features from Excel Database "ExpSys" 
Data = ddereq(ch3,'r2c2 :r2 l c  1 7')'; 
Data( l 7,:) = I ;  
%Fault Detection 
[Faults,prefault,NumSensor,state,ConSignFault] = Tolerance(Data,RADSiPNum,indexb,faultindex,state,ConSignFault,ch5); 
%Fault Identification New 
if any(any(state)) 

[ProbMat]=RulesNew(Faults,ProbMat,RADSiPNum,NumSensor,state,ConSignFault); 
end 
%ProbMatStutT(:,:,indexb) = ProbMat; 
%Save Faults, Problem, Logic in Excel Database New; 
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ProbStatus = [ProbMat(:, I :3) ProbMat(:,4:9)-PreProbMat(:,4:9)]; 
ifany(any(ProbStatus(:,4:9))) 

[ProblemNew,LogicNew,Colorldent] = lnference(ProbMat,PreProbMat,ProbStatus); 
[PExlnd] = ExcelESNew(ProblemNew,LogicNew,Colorldent,H,PEx lnd,ch7,indexb); 

end 
%Define Variables for following loop 
previousstate = state; 
LastFaults = Faults; 
PreProblem = Problem; 
Problem = {'0' '0' } ;  
Logic = {'0' } ;  
PreProbMat = ProbMat; 
ProbMat = ProbMatOrg; 

end 

Tolerance Function 

This function acts as the diagnostic module for detection faults in the CA VIS system. 

function [ Faults,prefault, NumSensor ,state,ConSignFault] = Tolerance( Data, RADSi PN um.index, faulti ndex,state, Con Sign Fa ult,ch5) 
% Inference - Inference engine for an expert system to monitor CAVIS system 
% Written by Joseph Bowling 
% 3/ 1 0/03 
% 
% Data = State of System 
% RADSiPNum = Sensor identification [PCDU#; SensorConcentrator#; Sensor#] 
% index = current index of data point 
% faultindex = current fault index (Used in database entry) 
% state = current state of system (Faulted or Unfaulted) used in print 
% statement 
% 
% Faults = Faults of System 
% NumSensor = Total number of sensors in system 
% state = current state of system (Faulted or Un faulted) used in print 
% statement 
% 
% 
% data! = Mean UP alann in last 1 000 data points 
% data2 = Mean DOWN alann in last I 000 data points 
% data3 = Variance UP alann in last 1 000 data points 
% data4 = Variance DOWN alann in last I 000 data points 
% data5 = Time between successive Mean UP alarm 
% data6 = Time between successive Mean DOWN alann 
% data7 = Time between successive Variance UP alarm 
% data8 = Time between successive Variance DOWN alarm 
% data9 = The number of same signs (+) of the residual 
% data l 0  = Variance of last 50 or 1 00 data points 
% data I l = Variance of last 5 data points 
% data l 2  = Mean UP alann in last 1 00 data points 
% data 13 = Mean DOWN alann in last I 00 data points 
% data l 4  = Variance UP alann in last 1 00 data points 
% data l 5  = Variance DOWN alann in last 1 00 data points 
% data 16 = Current count rate 
% data 1 7  = Communication status of CA VIS ( l =Good, 2 = Bad) 
%Test for fault to locate problematic sensors 
[NumData NumSensor]=size(Data); 
FaultSen = zeros(3,80); 
%Get previous faults 
%ch5 = ddeinit('excel','featextexcel/lnd50'); 
Counter = I ;  
Counter2 = 0; 
prefault = zeros(5,80); 
for i = 1 :20 
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a = Counter: 
b = Counter + 3;  
A = num2str(a); 
B = num2str(b); 
a = a-Counter2; 
b = b-Counter2; 
positcheck = ['r4c' A ]; 
check = ddereq(ch5,positcheck); 
if check = O  

Filler = [0]; 
positfiller = ['r4c' A ]; 
re = ddepoke(ch5,positfiller,Fil ler); 

end 
positprefault = ['r4c' A ':r8c' BJ; 
prefaultnum = ddereq(ch5,positprefault); 
[prex prey) = size(prefaultnum); 
prefault( I :prex,a:b-(4-prey)) = prefaultnum; 
Counter = Counter + 5; 

Counter2 = Counter2 + I ;  
end 
Counter5 = I ; 
Counter6 = 2;  
Counter7 = 3;  
Counters = 4; 
for j = I :NumSensor 

if Data( l j) >= 5; %6e-5; 
F( l ,j) = I ;  
state( I j )  = I ;  

else F( l j)  = O; 
state( l j )  = O; 

end 
if Data(2j) >= 5; %8e-5; 

F(2j) = I ;  

state(2j) = I ;  
else F(2,j) = O; 

state(2j) = 0; 
end 
if Data(3j) >= 5; %4e-6; 

F(3,j) = I ;  
state(3 j) = I ;  

else F(3,j) = O; 
state(3j) = 0; 

end 
if Data(4j) >= 5; %2e-5; 

F(4j) = I ;  

state(4j) = I ;  
else F(4j) = O; 

state(4j) = O; 
end 
if (prefault( l ,Counter5) = prefault{2,Counter5) + I )  & (index > 2); 

F(5j) = I ; 
state(5j) = I ; 

else F(5j) = O; 
state(5,j) = 0; 

end 
Counters = Counters + 4; 
if(prefault( l ,Counter6) = prefault{2,Counter6) + I ) & (index > 2); 

F(6j) = I ; 
state(6j ) = I ;  

else F(6j) = O; 
state(6j) = O; 

end 
Counter6 = Counter6 + 4; 
if (prefault( I ,Counter?) == prefault(2,Counter7) + I )  & (index > 2); 

F(7j) = I ;  

state(7,j) = I ;  

else F(7 j )  = 0; 
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state(7,j ) = 0; 
end 
Counter7 = Counter7 + 4; 
if (prefault( I ,CounterS) == prefault(2,CounterS) + I )  & (index > 2); 

F(S,j )  = I : 
state(S,j) = I ;  

else F(Sj) = 0; 
state(S,j) = 0; 

end 
Counters = Counters + 4; 
if abs(Data(9j)) >= 1 5; 

F(9j) = l ;  
state(9j) = 1 ;  
ConSignFault( ) ,j) = ConSignFault( l ,j) + l ;  

else F(9j) = O: 
state(9j) = O; 

end 
if (Data( 1 OJ) = 0) & (index > 50); 

F( ) Oj) = l ;  
state( I O,j) = I ;  

else F( I Oj) = O; 
state( ) Oj) = O; 

end 
if(Data( l l ,j) == 0) & (index > 3); 

F( l l j) = I ;  
state( l l j) =  I ;  

else F( ) I j )  = O; 
state( ! I j) = O; 

end 
if Data( 1 2j) >= 3; %6e-5; 

F( l 2j) = I ;  
state( l 2j) = I ; 

else F( I 2j) = O; 
state( l 2j) = O; 

end 
if Data( 1 3j) >= 3; ¾Se-5; 

F( ) 3j) = l ;  
state( 1 3,j) = I ;  

else F( 1 3 ,j )  = 0; 
state( l 3j) = O; 

end 
if Data( l4j) >= 3; %4e-6; 

F( l 4j) = l ;  
state( 14,j) = I ;  

else F( l4j) = 0; 
state( 14j) = O; 

end 
if Data( 1 5j) >= 3; %2e-5 ;  

F( ) 5j) = I ; 
state( I 5j) = I ;  

else F( 1 5j) = O; 
state( I 5j) = O; 

end 
if Data( l6,j) = 0; 

F( l 6j) = l ;  
state( l 6,j) = I ;  

else F( l 6j) = O; 
state( I 6j) = O; 

end 
%Communication Status 
i fData( l 7j) -= I ;  

F( l 7j) = I ;  
state( ) 7,j) = I ;  

else F( I 7 j )  = O; 
state( l 7 j) = O; 

end 
for i= l :NumData 
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if F(i,j) == I 
FaultSen(:,j) = RADSiPNum(:,j); 

end 
end 
end 

C=FaultSen( I , :); 
C=find(C); 
FaultSen=FaultSen( :,C); 
F=F( :,C); 
Faults = [FaultSen;F]; 
%Define state of system for print statement - Only print for change in 
%state of system 
[NumData NumSenJ=size(Faults); 
state(4: l 5,:) = 0; 
for j = I :NumData 

for i= l : NumSen 
Z = (80*Faults( 1 ,i))-80 + (20*Faults(2,i))-20 + Faults(3,i); 
state(i,Z) = Faults(j,i); 

end 
end 

RulesNew Function 

This function acts as the fault isolation module. It contains the characteristic fault portion 

of the knowledge base. The function also calls other function to establish facts additional 

facts. 

function [ProbMatJ=RulesNew(Faults,ProbMat,RADSiPNum,NumSensor,state,ConSignFault); 
% Rule base for Expert System to Monitor CAVIS System 
% Written by Joseph Bowling 
% 3/ 1 1 /03 
% Last Modified June 5,2003 
% 
% Rules based on Hierarchical System 
% 
% Faults = Faults detected by Inference 
% RADSiPNum = Radiation Sensor Identification 
% NumSensor = Total number of sensor in CA VIS system 
% state = current state of system (Faulted or Un faulted) used in print 
% statement 
% previousstate = Previous state of system (Faulted or Un faulted) used in 
% print state to only print during change of state 
% 

% Prob Mat = Matrix containing root causes of CA VIS fault 
% previousstate = Previous state of system ( Faulted or Un faulted) used in 
% print state to only print during change of state 
%Define necessary variables for rules 
[NumData NumSenJ = size(Faults); 
%Hierarchal Rule Base 
if NumSen > 3 %Set the tolerance for the minimum number of sensor to perform hierarchal rule base 

[PCDUSen,SCSen,PCDUSenFail,SCSenFail] = SenCount(Faults,RADSiPNum); 
[ProbMat) = HeirarchalNew(ProbMat,Faults,state,PCDUSen,SCSen,PCDUSenFail,SCSenFail); 

end 
%Sensor Failures 
%Dead Detector Alarm & Warning 
for i= I :20 

if (state( 14,i)=- I )&(state( 1 9,i)=l ); 
ProbMat(i+ I 0,4) = 2; %Dead Detector Alann 

elseif (state( 14,i)-= I )&(state( l 9,i)== I ); 
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ProbMat(i+ I 0,4) = I ;  %Dead Detector Warning 
end 

end 
%Stuck Detector Alann 
for i= I :20 

if (state( 14,i) == I )&(state( l 9,i)-= 1 ); 
ProbMat(i+ I 0,5) = 2; %Stuck Detector Alann 

end 
end 
%Loose Electrical Connection Alarm & Warning (Variance Shift Up) 
for i= I :20 

if 
(state(4,i)== I )&(state(5,i)= I )&(state(6,i)== I )&(state( 1 3,i}-= I )&(state( 14,i}-= I )&(state( l 5 ,i)= I )&(state( I 6,i)== I )&(state( 1 7,i)= 
I )&(state( 1 8,i)-= I ); 

ProbMat(i+ l 0,6) = 2; %Loose Detector Alann 
elseif (state( 1 3,i}-= I )&(state( 14,i)-= I )&(state( 1 5,i)=- I )&(state( 1 6,i)=l  )&(state( 1 7,i)=l )&(state( 1 8,i)-= I ); 

ProbMat(i+ I 0,6) = I ;  %Loose Detector Warning 
elseif (state(4,i)= I )&(state(5,i)=I )&(state(6,i)= I )&(state( 1 3,i}-= I )&(state( 14,i}-= I )&(state( 1 8,i}-=l ); 

ProbMat(i+ 1 0,6) = 1 ;  %Loose Detector Warning 
end 

end 
%Removal of Stored Nuclear Material Alarm (Mean Shift Down) 
for i= I :20 

if 
(state(4,i}-= I )&(state(5,i )= l  )&(state(6,i)=l )&(state( 1 3,i)-= I )&(state( 14,i)-= I )&(state( 1 5,i)-= l  )&(state( 1 6,i)= 1 )&(state( 1 7,i)= 
1 )&(state( l 9,i}-= I ); 

ProbMat(i+ 1 0,7) = 2; %Removal of material alarm 
elseif (state(4,i}-= I )&(state(5,i)=I )&(state(6,i)== I )&(state( 1 3,i}-= I )&(state( 14,i}-= I )&(state( 1 9,i}-=l  ); 

ProbMat(i+ 1 0, 7) = 1 ;  %Removal of material warning 
elseif (state( 1 3,i}-= l )&(state( 14,i}-=l )&(state( 1 5,i}-= l )&(state( 1 6,i )=-l )&(state( 1 7,i)= 1 )&(state( 1 9,i}-= I ); 

ProbMat(i+ I 0, 7) = 1 ;  %Removal of material warning 
end 

end 
%Run Test Warning 
%for i= l :20 
% ifConSignFault( l ,i)  > 3; 
% ProbMat(i+ I 0,8) = 1; %Drifting Sensor Warning 
% end 
%end 
%Drifting Sensor Warning (Mean Shift Down or Mean Shift Up) 
for i= l :20 

if ((state(4,i)==l I state(5,i)=l  )&(state( l 5 ,i)== I I state( 1 6,i)= I ))&(state( 1 3,i}-= I  )&(state( 14, i)-= 1 )&(state( I 9,i)-= l ); 
ProbMat(i+ I 0,9) = 2; %Drifting Sensor Alarm 

elseif ((state(4,i)= I )j(state(5,i)==I )j(state( l 5,i)= I )!(state( 1 6,i)=l  ))&(state( I 3 ,i)-= I )&(state( l4,i)-= l )&(state( 1 9,i}-= 1 ); 
ProbMat(i+ 1 0,9) = I ;  %Drifting Sensor Warning 

end 
end 
%Power or CA VIS System Failure 
if (NumSensor = NumSen) & (NumSensor > 20); 

ProbMat( l ,4) = l ;  %Total CAVlS System Failure 
end 
%External Source in Warehouse Alarm (Mean Shift Up) 
if 
(NumSen> 1 O)&(((sum(Faults( 4,:) )>=0.5*NumSen)&(sum(Faults(5, :  ))=O)l((sum(Faults( 1 5, :  ))>=0.5 *NumSen)&(sum(Faults( 1 6,:))== 
O)))); 

ProbMat( 1 ,5) = 1 ;  %Mean shift up in several sensors 
end 
%Temperature Increase in warehouse inducing fault in sensor (Extreme Mean Shift Up) 
if 
(NumSen> I O)&(((sum(Faults( 4,:))>=0.5*NumSen)&(sum(Faults(5, :))==0)l((sum(Faults( I 5, :))>=0.5*NumSen)&(sum(Faults( 1 6, :))=-
0)))); 

ProbMat( 1 ,6) = I ;  %Mean shift up in several sensors 
end 
%Note External Source and Temperature alarms are the same 
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SenCount Function 

This function is a portion of the isolation module that determines the number of RADSiP 

sensor present in the CA VIS system. 

function [PCDUSen,SCSen,PCDUSenFail,SCSenFail] = SenCount(Faults,RADSiPNum) 
% SenCount - Determines the number of RADSiP sensors for every 
% PCDU & Sensor Concentrator 
% 
% Written by T Jay Harrison & Joseph Bowling 
% April 1 4, 2003 
% Last Modified June 5, 2003 
% 
% Faults - Faults in system detected by Inference 
% RADSiPNum - Sensor Identification 
% 
% PCDUSen - Number of sensors for each PCDU 
% SCSen - Number of sensors for each Sensor Concentrator 
% PCDUSenFail - Number of faulted sensors for each PCDU 
% SCSenFail - Number of faulted sensors for each Sensor Concentrator 
[NumData NumSensor]=size(RADSiPNum); 
PCDUSen=0; 
SCSen=0; 
PCDUSenFail=0; 
SCSenFail=O; 
%Identify the number of sensor for each PCDU 
counter I = I ;  
counter2 = 0; 
counter3 = I ;  
for i = I : NumSensor; 

if RADSiPNum( l ,i) == counter l ;  
counter2 = counter2 + I ; 

elseif RADSiPNum( 1 ,i) -= counterl ; 
PCDUSen( 1 ,counter3) = counter I ;  
PCDUSen(2,counter3) = counter2; 
counter) = counter l + I ;  
counter2 = I ; 
counter3 = counter3 + I ;  

end 
PCDUSen( l ,counter3) = counterl ; 
PCDUSen(2,counter3 ) = counter2; 

end 
%Identify the number of sensor for each Sensor Concentrator 
counterl = I ;  
counter2 = l ;  
counter3 = 0; 
counter4 = I ;  
for i = l :NumSensor; 

if (RADSiPNum( 1 ,i) = counter) )&(RADSiPNum(2,i) = counter2); 
counter3 = counter3 + I ;  

elseif (RADSiPNum( 1 ,i) == counter! )&(RADSiPNum(2,i) -= counter2); 
SC Sen( 1 ,counter4) = counter I ;  
SCSen(2,counter4) = counter2; 
SCSen(3,counter4) = counter3; 
counter2 = counter2 + I ; 
counter3 = I ;  
counter4 = counter4 + I ;  

elsei f (RADSi PN um( 1 ,i) -= counter I )&(RADSi PNum(2,i) -= counter2 ); 
SCSen( l ,counter4) = counter l ;  
SCSen(2,counter4) = counter2; 
SCSen(3,counter4) = counter3; 
counter ) = counterl + I ;  
counter2 = I ;  
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counter3 = I ;  
counter4 = counter4 + I ;  

end 
%Needed if only one PCDU & one Sensor Concentrator 
if (counter l = l )&(counter2 == l ); 

SCSen( l ,counter4) = counter ! ;  
SCSen(2,counter4) = counter2; 
SCSen(3,counter4) = counter3; 

end 
%Need to enter last data entry 
SC Sen( l ,counter4) = counter I ;  
SCSen(2,counter4) = counter2; 
SCSen(3,counter4) = counter3; 

end 
[x i y l J  = size(Faults); 
counter = zeros( 1 ,4); 
counter ! = zeros(4); 
for index2 = I :yl 

steve = Faults( 1 ,index2); 
sammy = Faults(2,index2); 
if steve == I 

counter( I )  = counter( I )  + I ;  
if sammy == I 

counter ! ( I ,  I ) = counter I (  I ,  I ) +  I ;  
elseif sammy == 2 

counter l ( l ,2) = counter l ( l ,2) + I ;  
elseif sammy == 3 

counter ! (  1 ,3) = counter l ( l ,3) + I ;  
elseifsammy == 4 

counterl ( l ,4) = counter l ( l ,4) + I ;  
end 

elseif steve == 2 
counter(2) = counter(2) + I ;  
ifsammy = I 

counter I (2, I )  = counter I (2, I )  + I ;  
elseifsammy == 2 

counter l (2,2) = counter l (2,2) + I ;  
elseif sammy == 3 

counter I (2,3) = counter I (2,3) + I ;  
elseif sammy = 4 

counter l (2,4) = counter l (2,4) + I ;  
end 

elseif steve = 3 
counter(3) = counter(3) + I ;  
if sammy = I 

counter I (3, I )  = counter I (3, I )  + I ;  
elseif sammy == 2 

counter ! (3,2) = counter! (3,2) + I ;  
elseif sammy = 3 

counter ! (3,3) = counter I (3,3) + I ;  
elseif sammy = 4 

counter l (3,4) = counter l (3,4) + I ;  
end 

elseif steve = 4 
counter(4) = counter(4) + I ;  
if sammy = I 

counter l (4, l ) = counter l (4, l ) + I ;  
elseifsammy == 2 

counter I (4,2) = counter! (4,2) + I ;  
elseif sammy == 3 

counter l (4,3) = counterl (4,3) + I ;  
elseifsammy == 4 

counter I (4,4) = counter l (4,4) + I ;  
end 

end 
end 
%PCDUSenFail( l , :) = 1 : 1 ;  
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for k =  I :4 
PCDUSenFail( l ,k) = k; 
PCDUSenFai 1(2,k) = counter(k); 

end 
SCSenFail( I ,  I :4) = I ;  
SCSenFai l( l ,5:8) = 2; 
SCSenFail( l ,9: 1 2) = 3 ; 
SCSenFai l( I ,  1 3 :  1 6) = 4; 
SCSenFai1(2, I :4) = I :4; 
SCSenFai1(2,5:8) = I :4; 
SCSenFail(2, 9: I 2) = I :4; 
SCSenFai1(2, 1 3 : 1 6) = 1 :4; 
r = I ;  
for j = 1 :4 

for m = 1 :4 
SCSenFail(3,r) = counter l G,m); 
r = r +  I ;  

end 
end 

HierarchalNew Function 

This function is a portion of the isolation module. It contains the hierarchal portion of the 

knowledge base. 

function [ProbMat] = HeirarchalNew(ProbMat,Faults,state,PCDUSen,SCSen,PCDUSenFail,SCSenFail); 
%Hierarchal - Fault identification function based on hierarchal rule base 
% Iden ti fies faulty component in CA VIS system if all sensors that 
% correspond to component fail 
% Written by Joseph Bowling, May 5, 2003 
% Last modified June 4, 2003 
% 
% Faults - Matrix. containing faulty sensor identification and nature of 
% faults 
% RADSiPNumFail - Number of failed sensors 
% PCDUSen - Number of sensors that correspond to each PCDU 
% SCSen - Number of sensors that correspond to each Sensor Concentrator 
% PCDUSenFail - Number of failed sensors that correspond to each PCDU 
% SCSenFail - Number of failed sensors that correspond to each Sensor Concentrator 
% 
% Problem - Isolated fault in CA VIS system 
%Define necessary variables are function 
[NumData NumSen] = size(Faults); 
[PCDUx. NumPCDU] = size(PCDUSen); 
[SCx NumSC] = size(SCSen); 
%PCDU Problem Identification 
%IF every sensor from a particular PCDU experiences a fault 
%Then the problem is in the PCDU 
for i = I :NumPCDU 

if (PCDUSen(2,i) = PCDUSenFail(2,i)) & (PCDUSen(2,i)>20); 
if (sum(Faults( l 4,:)) >= 80) & (sum(Faults( 19,:)) >= 80) & (sum(Faults(20,:)) < 2); 

ProbMat(3,4) = 2; %PCDU Dead Alann 
elseif (sum(Faults( 1 4,:)) < 2) & (sum(Faults( 1 9,:)) >= 80) & (sum(Faults(20,:)) < 2); 

ProbMat(3,4) = I; %PCDU Dead Warning 
end 
if (sum(Faults( 1 4,:)) >= 80) & (sum(Faults( I 9,:)) < 2) & (sum(Faults(20, :)) < 2); 

ProbMat(3,5) = 2; %PCDU Stuck Alann 
end 
if 

(sum(Faults(4,:))>=60)&(sum(Faults(5,:))>=60)&(sum(Faults(6,:))>=60)&(sum(Faults( l 3,:))<2)&(sum(Faults( l4, : ))<2)&(sum(Faults 
( I 5, :))>=60)&(sum(Faults( I 6, :))>=60)&(sum(Faults( I 7,:))>=60)&(sum(Faults( 1 9,:))<2); 
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ProbMat(3,6) = 2; ¾PCDU loose wire or connection Alann 
end 
if (sum(Faults(20, :)) >= 80) 

ProbMat(3,7) = 2; ¾PCDU Unplugged, lost communication Alarm 
end 
ProbMat(3,8) = I ;  ¾PCDU has failed, all corresponding sensors have faults 

end 
end 
%Sensor Concentrator Fault 
%IF every sensor from a particular sensor concentration experiences a fault 
% Then the problem is in the Sensor Concentrator 
for i = I :NumSC 

if (SCSen(3,i) == SCSenFai1(3,i)) & (SCSen(3,i) > 10); 
if (sum(Faults( l4,:)) == 20) & (sum(Faults( l 9,:)) == 20) & (sum(Faults(20, :)) < 2) 

ProbMat(4,4) = 2; %Sen Cone Dead Alarm 
elseif(sum(Faults( 1 4, :)) < 2) & (sum(Faults( l9,:)) == 20) & (sum(Faults(20,:)) < 2) 

ProbMat(4,4) = I ;  %Sen Cone Dead Warning 
end 
if (sum(Faults( 14, :)) = 20) & (sum(Faults( 1 9, :)) < 2) & (sum(Faults(20,:)) < 2); 

ProbMat(4,5) = 2; %Sen Cone Stuck Alann 
end 
if 

(sum(Faults(4,:))>= 1 5)&(sum(Faults(5, :))>= 1 5)&(sum(Faults(6,:))>= I 5)&(sum(Faults( 1 3, : ))<2)&(sum(Faults( 14, :))<2)&(sum(Faults 
( 1 5, :))>= 1 5)&(sum(Faults( 1 6, : ))>= 1 5)&(sum(Faults( 1 7,:))>= 1 5)&(sum(Faults( 1 9,:))<2); 

ProbMat(4,6) = 2; %Sen Cone loose wire or connection Alann 
end 
if (sum(Faults(20,:)) >= 20) 

ProbMat(4,7) = 2; %Sen Cone Unplugged, lost communication Alarm 
end 
ProbMat(4,8) = I ;  %Sen Cone has failed, all corresponding sensors have faults 

end 
end 
%Sensor Concentrator Board Fault 
%IF 1 /2 of the sensors from a particular sensor concentration corresponding to a SC board experiences a fault 
% Then the problem is in the Sensor Concentrator Board May need floor or 
¾ceil in front of ( 1 /2)*SCSen(3,i) 
%Communication Board I 
for i = I :NumSC 

if (( 1 /2)*SCSen(3,i) == (SCSenFai1(3,i))) & (SCSen(3,i) > 5) & (sum(Faults(3 , :)) = 55); 
if (sum(Faults( 1 4, :)) >= I 0) & (sum(Faults( 19,:)) >= I 0) & (sum(Faults(20, :)) < I ); 

ProbMat(5,4) = 2; %Sen Cone Dead Alarm 
elseif (sum(Faults(l 4, :)) < I )  & (sum(Faults( l 9,:)) >= 1 0) & (sum(Faults(20,:)) < I ); 

ProbMat(5,4) = I ;  %Sen Cone Dead Warning 
end 
if (sum(Faults( 14, :)) >= 1 0) & (sum(Faults( 19,:)) < I) & (sum(Faults(20,:)) < I ); 

ProbMat(5,5) = 2; %Sen Cone Stuck Alarm 
end 
if 

(sum(Faults(4,:))>=7)&(sum(Faults(5,:))>=7)&(sum(Faults(6,:))>=7)&(sum(Faults( 1 3,:))< I )&(sum(Faults( 1 4, :))< I )&(sum(Faults( 1 5, 
: ))>=7)&(sum(Faults( l 6,:))>=7)&(sum(Faults( l 7,:))>=7)&(sum(Faults( 1 9,:))< 1 ); 

ProbMat(5,6) = 2; %Sen Cone loose wire or connection Alarm 
end 
if (sum(Faults(20,:)) >= 20) 

ProbMat(5,7) = 2; %Sen Cone Unplugged, lost communication Alarm 
end 
ProbMat(5,8) = I ;  %Sen Cone has failed, all corresponding sensors have faults 

end 
end 
%Communication Board 2 
for i = I :NumSC 

if(( l /2)*SCSen(3,i) == (SCSenFail(3,i))) & (SCSen(3,i) > 5) & (sum(Faults(3,:)) = 1 55); 
if (sum(Faults( 1 4, :)) >= I O) & (sum(Faults( l9, :)) >= 1 0) & (sum(Faults(20,:)) < I ); 

ProbMat(6,4) = 2; %Sen Cone Comm Board Dead Alarm 
elseif (sum(Faults( 1 4,:)) < I )  & (sum(Faults( l 9,:)) >= I 0) & (sum(Faults(20,:)) < I ); 

ProbMat(6,4) = I ;  %Sen Cone Comm Board Dead Warning 
end 
if (sum(Faults( 1 4,:)) >= I 0) & (sum(Faults( 1 9, :)) < I )  & (sum(Faults(20,:)) < I ); 
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ProbMat(6,5) = 2; %Sen Cone Comm Board Stuck Alarm 
end 
if 

(sum(Faults(4,:))>=7)&(sum(Faults(5,:))>=7)&(sum(Faults(6,:))>=7)&(sum(Faults( 1 3,:))< I  )&(sum(Faults( 14, : ))< I )&(sum(Faults( I 5, 
:))>=7)&(sum(Faults( I 6,:))>=7)&(sum(Faults( 1 7,: ))>=7)&(sum(Faults( 1 9,:))< l ); 

ProbMat(6,6) = 2; %Sen Cone Comm Board loose wire or connection Alarm 
end 
if (sum(Faults(20,:)) >= 1 0) 

ProbMat(6,7) = 2; %Sen Cone Comm Board Unplugged, lost communication Alarm 
end 
ProbMat(6,8) = l ;  %Sen Cone Comm Board has failed, all corresponding sensors have faults 

end 
end 
%Sensor Concentrator Board Fault 
%IF 1 /4 of the sensors from a particular sensor concentration corresponding to a SC board experiences a fault 
% Then the problem is in the Sensor Concentrator Board, May need floor or 
%ceil in front of ( l /4)*SCSen(3,i) 
%Process Board I 
for i = l :NumSC 

if(( l/4)*SCSen(3,i) == (SCSenFail(3,i))) & (sum(Faults(3,:)) == 1 5); 
if(sum(Faults( l4, :)) >= 5) & (sum(Faults( l 9,:)) >= 5) & (sum(Faults(20,:)) < l ); 

ProbMat(7,4) = 2; %Sen Cone Process Board Dead Alarm 
elseif (sum(Faults( 1 4, :)) < I )  & (sum(Faults( l 9,:)) >= 5) & (sum(Faults(20,:)) < I ); 

ProbMat(7,4) = I ;  %Sen Cone Process Board Dead Warning 
end 
if(sum(Faults( l4,:)) >= 5) & (sum(Faults( l 9,:)) < l )  & (sum(Faults(20,:)) < l ); 

ProbMat(7 ,5) = 2; %Sen Cone Process Board Stuck Alarm 
end 
if 

(sum(Faults(4,:))>=3)&(sum(Faults(5,:))>=3)&(sum(Faults(6,:))>=3 )&(sum(Faults( 1 3,:))< 1 )&(sum(Faults( 1 4,:))< I )&(sum(Faults( 1 5, 
:))>=3)&(sum(Faults( I 6,:))>=3)&(sum(Faults( l 7,:))>=3)&(sum(Faults( 1 9,:))< I ); 

ProbMat(7,6) = 2; %Sen Cone Process Board loose wire or connection Alarm 
end 
if (sum(Faults(20,:)) >= 5) 

ProbMat(7,7) = 2; %Sen Cone Process Board Unplugged, lost communication Alarm 
end 
ProbMat(7,8) = I ;  %Sen Cone Process Board has failed, all corresponding sensors have faults 

end 
end 
%Process Board 2 
for i = I :NumSC 

if (( l/4)*SCSen(3,i) == (SCSenFai l(3,i))) & (sum(Faults(3,:)) = 40); 
if (sum(Faults( 14,:)) >= 5) & (sum(Faults( 1 9,:)) >= 5) & (sum(Faults(20,:)) < I ); 

ProbMat(8,4) = 2; %Sen Cone Process Board Dead Alarm 
elseif (sum(Faults( 14,:)) < l )  & (sum(Faults( 1 9,:)) >= 5) & (sum(Faults(20,:)) < I ); 

ProbMat(8,4) = I ;  %Sen Cone Process Board Dead Warning 
end 
if (sum(Faults( l4,:)) >= 5) & (sum(Faults( 1 9, :)) < l) & (sum(Faults(20,:)) < I ); 

ProbMat(8,5) = 2; %Sen Cone Process Board Stuck Alarm 
end 
if  

(sum(Faults(4,:))>=3)&(sum(Faults(5,:))>=3)&(sum(Faults(6,:))>=3)&(sum(Faults( 1 3,:))< I )&(sum(Faults( 1 4,:))< I )&(sum(Faults( 1 5, 
:))>=3)&(sum(Faults( 1 6, :))>=3)&(sum(Faults( l 7,:))>=3)&(sum(Faults( 1 9,:))< I ); 

ProbMat(8,6) = 2; %Sen Cone Process Board loose wire or connection Alarm 
end 
if (sum(Faults(20,:)) >= 5) 

ProbMat(8, 7) = 2; %Sen Cone Process Board Unplugged, lost communication Alarm 
end 
ProbMat(8,8) = I ;  %Sen Cone Process Board has failed, all corresponding sensors have faults 

end 
end 
%Process Board 3 
for i = l :NumSC 

if (( l /4)*SCSen(3,i) == (SCSenFai1(3,i))) & (sum(Faults(3,:)) = 65); 
if (sum(Faults( l 4,:)) >= 5) & (sum(Faults( I 9,:)) >= 5) & (sum(Faults(20, :)) < I ); 

ProbMat(9,4) = 2; %Sen Cone Process Board Dead Alarm 
elseif (sum(Faults( l 4,:)) < l )· & (sum(Faults( 1 9,:)) >= 5) & (sum(Faults(20,:)) < l ); 
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ProbMat(9,4) = I ;  %Sen Cone Process Board Dead Warning 
end 
if (sum(Faults( 14, :)) >= 5) & (sum(Faults( 1 9,:)) < I )  & (sum(Faults(20, :)) < I ); 

ProbMat(9,5) = 2; %Sen Cone Process Board Stuck Alann 
end 
if 

(sum(Faults(4,:))>=3 )&(sum(Faults(5,: })>=3 )&(sum(Faults(6,: ))>=3)&(sum(Faults( 1 3, :))< I }&(sum(Faults( 1 4,:))< I )&(sum(Faults( 1 5, 
:))>=3)&(sum(Faults( I 6,:))>=3)&(sum(Faults( l 7,:))>=3)&(sum(Faults( l 9,:))< I ); 

ProbMat(9,6) = 2; %Sen Cone Process Board loose wire or connection Alann 
end 
if (sum(Faults(20,:)) >= 5)  

ProbMat(9, 7 )  = 2 ;  %Sen Cone Process Board Unplugged, lost communication Alann 
end 
ProbMat(9,8) = l; %Sen Cone Process Board has failed, all corresponding sensors have faults 

end 
end 
%Process Board 4 
for i = t :NumSC 

if (( t /4)*SCSen(3,i) == (SCSenFail(3,i))) & (sum(Faults(3,:)} = 90); 
if (sum(Faults( 14, :)) >= 5) & (sum(Faults( 1 9, :)) >= 5) & (sum(Faults(20,:)) < I ); 

ProbMat( I 0,4) = 2; %Sen Cone Process Board Dead Alann 
elseif (sum(Faults( I 4,:)) < I )  & (sum(Faults( 1 9, :)) >= 5) & (sum(Faults(20,:)) < I ); 

ProbMat( I 0,4) = I ;  %Sen Cone Process Board Dead Warning 
end 
if (sum(Faults( l4, : )) >= 5) & (sum(Faults( 1 9,:)) < I )  & (sum(Faults(20, :)) < I ); 

ProbMat( I 0,5) = 2; %Sen Cone Process Board Stuck Alarm 
end 
if 

(sum(Faults( 4, :  ))>=3 )&(sum(Faults(5,:))>=3 )&(sum(Faults( 6,:))>=3 )&(sum(Faults( 1 3, :) )< I )&(sum(Faults( 1 4,:))< I )&(sum(Faults( 1 5, 
:))>=3)&(sum(Faults( 1 6, :))>=3)&(sum(Faults( I 7,:)}>=3)&(sum(Faults( 1 9, :))< I ); 

ProbMat( I 0,6) = 2; %Sen Cone Process Board loose wire or connection Alann 
end 
if (sum(Faults(20,:)) >= 5 )  

ProbMat( l 0,7) = 2 ;  %Sen Cone Process Board Unplugged, lost communication Alann 
end 
ProbMat( l 0,8) = I ;  %Sen Cone Process Board has failed, all corresponding sensors have faults 

end 
end 

Inference Function 

This function acts as the inference engine for the expert system. It determines which 

rules should fire by calling an additional sub inference engine specific to the CA VIS 

system state. 

function [Problem,Logic,Colorldent] = lnference(ProbMat,PreProbMat,ProbStatus); 
¾Inference - Determines which rules fire for the expert system 
% Written by Joseph Bowling 
% 1 1 - 1 3-03 
Plnd = I ;  
Problem = {'0' '0'} ;  
Logic = {'0' } ;  
Colorldent = 0; 
%Dead Sensor Inference Engine 
i f  any(ProbStatus( :,4 )); 

[Problem,Logic,Colorldent,Plnd] = Deadlnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
end 
%Stuck Sensor Inference Engine 
if any(ProbStatus(:,5)); 
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[ Problem,Logic,Colorldent,Plnd] = Stucklnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
end 
%Loose Wire Inference Engine 
if any(ProbStatus(:,6)); 

[Problem,Logic,Colorfdent,Plnd] = LooseWirelnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
end 
%Unplugged Component Inference Engine 
if any(ProbStatus(3 : I 0, 7)); 

[Problem,Logic,Colorldent,Plnd] = Unpluggedlnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
end 
%Removal of SNM 
if any(ProbStatus( 1 1  :30, 7)); 

[Problem,Logic,Colorldent,Plnd] = SNMRemovelnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
end 
%Component Failure Inference Engine 
%if any(ProbStatus(3: I 0,8)) & (max(max(ProbStatus(3:  I 0,3 : 7)))>0); 
% [Problem,Logic,Colorfdent,Plnd] = CompFaillnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
%end 
%Sensor Drift Run Test 
%if any(ProbStatus( 1 1  :30,8)); 
% [Problem,Logic,Colorldent,Plnd] = DriftRunlnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
%end 
%Sensor Drift SPRT 
if any(ProbStatus( I I :30,9)); 

[Problem,Logic,Colorldent,Plnd] = DriftSPRTinference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
end 
%CA VIS warehouse or system faults 
if any(ProbStatus( 1 , : )) 

i f (ProbMat( l ,4)= 1 )  & (ProbStatus( l ,4)-=0); 
Problem(Plnd,:) = {'CA VIS has failed' } ;  
Logic(Pind,:) = {'CA VIS has failed because all sensors have failed' } ;  
Colorldent(Pind,:) = 2; 
Plnd = Plnd + I ;  

end 
if (Prob Mat( 1 ,4)==0) & (ProbStatus( 1 ,4}=- 1 ); 

Problem(Plnd,:) = {'CAVIS is no longer failing' } ;  
Logic(Pind,:) = {'All o r  some o f  the C A  V I S  sensors are functional' } ;  
Colorldent(Pind,:)  = 3 ;  
Plnd = Plnd + I ;  

end 
if (ProbMat( l ,5)=-1 ) & (ProbStatus( l ,5)-=0); 

Problem(Plnd, :)  = {'Warning: An external radiation source may be in warehouse' } ;  
Logic(Pind,:) = {' l /2 o f  the CA VIS sensors have experienced a mean shift up'} ;  
Colorldent(Pind,:) = I ;  
Plnd = P lnd + I ;  

end 
if (ProbMat{ l ,5)=0) & (ProbStatus( l ,5)= 1 ); 

Problem{Plnd, :)  = {'An external radiation source is no longer detected'} ;  
Logic(Pind,:) = {'A mean shift up i s  n o  longer detected i n  1 /2 o f  the CAVIS sensors' } ;  
Colorldent(Pind, :) = 3 ;  
Plnd = Plnd + I ;  

end 
%if (Prob Mat( 1 ,6 )=I )  & (ProbStatus( 1 ,6)-=0); 
% Problem(Plnd,:) = {'Warning: The environ. cond. may have induced CA VIS drifts' } ;  
% Logic(Pind,:) = { ' l /2 of  the CAVIS sensors have experienced a mean shift up'} ;  
% Colorldent(Pind,:) = I ;  
% Plnd = Plnd + I ;  
%end 
%if (ProbMat( l ,6)=0) & (ProbStatus( l ,6)=- 1 ); 
% Problem(Plnd,:) = {'The environ. cond. drifts are no longer detected'} ;  
% Logic(Pind,:) = {'A mean shift u p  is n o  longer detected i n  1 /2 o f  the CAVIS sensors' } ;  
% Colorldent(Pind,:) = 3;  
% Plnd = Plnd + I ;  
%end 

end 
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Deadlnference Function 

This function acts as a sub inference engine for the detection of dead or failed CA VIS 

components. 

function [Problem,Logic,Colorldent,Plnd] = Deadlnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
%Deadlnference - Inference Engine for the dead sensors 
% Written by Joseph Bowling 
% 1 1 / 1 3/03 
if (ProbMat(3,4) == 2) & (ProbStatus(3,4) -= 0); 

Problem(Plnd,:) = {'The PCUD is dead: ' num2str(ProbMat(3, I ))} ; 
Logic(Plnd, :)  = { 'Zero count rate for all sensors corresponding to the PCDU for 5 cons. obs. ' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(3,4) = I )  & (ProbStatus(3,4) -= 0); 
Problem(Plnd,:) = {'Warning: The PCUD may be dead: ' num2str(ProbMat(3, I )) } ;  
Logic(Plnd,:) = { 'Zero count rate for  all sensors corresponding to the Sen. Cone.' } ;  
Colorldent(Plnd, :) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(3,4) = 0) & ((ProbStatus(3,4) == - I )  I (ProbStatus(3,4) == -2)); 
Problern(Plnd,:) = {'The PCUD is no longer dead: ' num2str(ProbMat(3, I )) } ;  
Logic(Plnd,:) ::: { 'The sensors corresponding to the PCDU no longer have a zero count rate' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(4,4) = 2 )  & (ProbStatus(4,4) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. is dead: ' num2str(ProbMat(4, I :2)) } ; 
Logic(Plnd,:) = { 'Zero count rate for all sensors corresponding to the Sen. Cone. for 5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2;  
Plnd = Plnd + I ;  

elseif (ProbMat(4,4) = I )  & (ProbStatus(4,4) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Cone. may be dead: ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd,:) = { 'Zero count rate for a l l  sensors corresponding to the Sen. Cone. ' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(4,4) = 0) & ((ProbStatus(4,4) == - I )  I (ProbStatus(4,4) == -2)); 
Problem(Plnd,:) = {'The Sensor Cone. is no longer dead: ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the Sen. Cone. no longer have a zero count rate' } ;  

Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  

elseif (ProbMat(5,4) = 2 )  & (ProbStatus(5,4) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board I is dead: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd,:) = { 'Zero count rate for  all sensors corresponding to the board for  5 cons. obs.' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(5,4) = I )  & (ProbStatus(5,4) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Cone. Comm. Board I may be dead: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd,:) = { 'Zero count rate fo r  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(5,4) = 0) & ((ProbStatus(5,4) = - I )  I (ProbStatus(5,4) == -2)); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board I is no longer dead: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to  the board no longer have a zero count rate'} ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(6,4) = 2 )  & (ProbStatus(6,4) -= 0); 
Problern(Plnd,:) = {'The Sensor Cone. Comm. Board 2 is dead: ' num2str(ProbMat(6, I :2))} ;  
Logic(Plnd,:) = { 'Zero count rate for  all sensors corresponding to the board for  5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(6,4) = I )  & (ProbStatus(6,4) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Cone. Comm. Board 2 may be dead: ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd, : )  = { 'Zero count rate for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
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Plnd = Plnd + I ;  
elseif (ProbMat(6,4) = 0) & ((ProbStatus{6,4) == - I )  I (ProbStatus{6,4) == -2)); 

Problem(Plnd, :) = {'The Sensor Cone. Comm. Board 2 is no longer dead: ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd, :) = {'The sensors corresponding to the board no longer have a zero count rate'} ;  
Colorldent(Plnd,:) = 3 ;  
Pind = Plnd + I ;  

elseif (ProbMat(7,4) = 2 )  & (ProbStatus(7,4) -= 0); 
Problem(Plnd,:) = { 'The Sensor Cone. Process. Board I is dead: ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd,:) = { 'Zero count rate fo r  all sensors corresponding to the board fo r  5 cons. obs.' } ;  
Colorldent(Plnd,: )  = 2 ;  
Plnd = Plnd + I ;  

elsei f (ProbMat(7,4) = I )  & (ProbStatus(7,4) -= 0); 
Problem(Plnd, :) = {'Warning: The Sensor Process Board I may be dead: ' num2str(ProbMat{7, I :2)) } ;  
Logic(Plnd,:) = {'Zero count rate fo r  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(7,4) = 0) & ((ProbStatus(7,4) = - 1 )  I (ProbStatus(7,4) == -2)); 
Problem(Plnd,:) = {'The Sensor Process Board I is no longer dead: ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no longer have a zero count rate' } ;  
Colorldent(Plnd,:) = 3;  
Plnd = Plnd + I ;  

elseif (ProbMat(8,4) = 2 )  & (ProbStatus(8,4) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 2 is dead: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'Zero count rate for  all sensors corresponding to  the board for  5 cons. obs.' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(8,4) = I )  & (ProbStatus(8,4) -= 0); 
Problem(Plnd, :) = {'Warning: The Sensor Process Board 2 may be dead: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd, :) = { 'Zero count rate for  all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(8,4) = 0 )  & ((ProbStatus(8,4) = - 1 )  I (ProbStatus(8,4) == -2)); 
Problem(Plnd,:) = {'The Sensor Process Board 2 is no longer dead: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no  longer have a zero count rate' } ;  
Colorldent(Plnd, : )  = 3 ;  
Plnd = Plnd + l ;  

elseif (ProbMat(9,4) = 2 )  & (ProbStatus(9,4) -= 0); 
Problem(Plnd,:) = { 'The Sensor Cone. Process. Board 3 is dead: ' num2str(ProbMat(9, I :2))} ;  
Logic(Plnd,:) = { 'Zero count rate for all sensors corresponding to the board for 5 cons. obs.' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(9,4) = I )  & (ProbStatus(9,4) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Process Board 3 may be dead: ' num2str(ProbMat(9, I  :2)} } ;  
Logic(Plnd,:) = { 'Zero count rate for a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plrid + l ;  

elseif (ProbMat(9,4) = 0 )  & ((ProbStatus(9,4) == - 1 ) I (ProbStatus(9,4) ==  -2)); 
Problem(Plnd, :) = {'The Sensor Process Board 3 is no longer dead: ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no  longer have a zero count rate' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  

elseif (ProbMat( I 0,4) == 2) & (ProbStatus( I 0,4) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 4 is dead: ' num2str(ProbMat( I 0, I :2)) } ;  
Logic(Plnd,:) = { 'Zero count rate for  all sensors corresponding to  the board for  5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2; 
Pind = Plnd + I ;  

elseif (ProbMat( I 0,4) == I )  & (ProbStatus( I 0,4) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Process Board 4 may be dead: ' num2str(ProbMat( I 0, I :2)) } ;  
Logic(Plnd,:) = {'Zero count rate for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,: )  = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat( I 0,4) == 0) & ((ProbStatus( 1 0,4) = - I )  I (ProbStatus( I 0,4) == -2)); 
Problem(Plnd, :) = {'The Sensor Process Board 4 is no longer dead: ' num2str(ProbMat( I 0, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no longer have a zero count rate' } ;  
Colorldent(Plnd, : )  = 3; 
Plnd = Plnd + I ;  

elseif any(ProbMat( 1 1  :30,4)) I any(ProbStatus( 1 1  :30,4)) 
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for k =  1 :20 
if (ProbMat(k+ 1 0,4) = 2) & (ProbStatus(k+ 1 0,4) -= 0) 

Problem(Plnd,:) = {'The RADSiP sensor is dead: ' num2str(ProbMat( l o+k, I :3)) } ; 
Logic(Plnd,:) = {'Zero count rate for the sensor for 5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

end 
if (ProbMat(k+ I 0,4) = I )  & (ProbStatus(k+ I 0,4) -= 0) 

Problem(Plnd,:) = {'Warning: The RADSiP sensor may be dead: ' num2str(ProbMat( I o+k, l :3)) } ;  
Logic(Plnd,:) = { 'Zero count rate for  the sensor' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

end 
if (ProbMat(k+ I 0,4) = 0) & ((ProbStatus(k+ I 0,4) == - 1 )  I (ProbStatus(k+ l 0,4) == -2)); 

Problem(Plnd,:) = {'The RADSiP sensor is no longer dead: ' num2str(ProbMat( I o+k, I :3 )) } ;  
Logic(Plnd,:) = {'The sensors no  longer has a zero count rate' } ;  
Colorident(Plnd,:) = 3; 
Plnd = Plnd + I ;  

end 
end 

end 

Stuck.Inference Function 

This function acts as a sub inference engine for the detection of stuck CA VIS 

components. 

function [Problem,Logic,Colorldent,Plnd] = Stucklnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
¾Stucklnference - Inference Engine for the stuck sensors 
% Written by Joseph Bowling 
% 1 1 / 1 3/03 
if (ProbMat(3,5) == 2) & (ProbStatus(3,5) -= 0); 

Problem(Plnd, : )  = {'The PCUD is stuck: ' num2str(ProbMat(3, I )) } ;  
Logic(Plnd, :) = {'All sensor corresponding to the PCDU have same count rate for  5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2 ;  
Plnd = Plnd + I ;  

elseif (ProbMat(3 ,5) = 0 )  & (ProbStatus(3,5) ==  -2); 
Problem(Plnd, :) = {'The PCUD is no longer stuck: ' num2str(ProbMat(3, l )) } ;  
Logic(Plnd, : )  = {'The sensors corresponding to the PCDU no longer have the same count rate' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(4,5) = 2 )  & (ProbStatus(4,5) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. is stuck: ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd, :) = {'All sensor corresponding to the Sen. Cone. have same count rate for  5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2;  
Plnd = Plnd + l ;  

elseif (ProbMat(4,5) = 0) & (ProbStatus(4,5) == -2); 
Problem(Plnd,:) = {'The Sensor Cone. is no longer stuck: ' num2str(ProbMat(4, l :2)) } ;  
Logic(Plnd,:) = { 'The sensors corresponding to the Sen. Cone. no  longer have the same count rate' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  

elseif (ProbMat(5,5) = 2 )  & (ProbStatus(5,5) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board I is stuck: ' num2str(ProbMat(5, I :2))} ; 
Logic(Plnd,:) = {'All sensor corresponding to the board have same count rate for 5 cons. obs. ' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(5,5) = 0) & (ProbStatus(5,5) = -2); 
Problem(Plnd, :) = {'The Sensor Cone. Comm. Board l is no longer stuck: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no  longer have the same count rate' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  
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elseif (ProbMat(6,5) = 2) & (ProbStatus(6,5) -= 0); 
Problem(Plnd, :) = {'The Sensor Cone. Comm. Board 2 is stuck: ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd,:) = {'All sensor corresponding to the board have same count rate fo r  5 cons. obs. ' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(6,5) = 0) & (ProbStatus(6,5) == -2); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board 2 is no longer stuck: ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board n o  longer have the same count rate' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  

elseif (ProbMat(7,5) = 2 )  & (ProbStatus(7,5) -= 0); 
Problem(Plnd,:) = { 'The Sensor Cone. Process. Board I is stuck: ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd, :) = {'All sensor corresponding to the board have same count rate for  5 cons. obs.' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(7,5) = 0) & (ProbStatus(7,5) = -2); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board I is no longer stuck: ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding t o  the board n o  longer have the same count rate' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(8,5) = 2) & (ProbStatus(8,5) -= 0); 
Problem(Plnd,:)  = { 'The Sensor Cone. Process. Board 2 is stuck: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'All sensor corresponding t o  the board have same count rate fo r  5 cons. obs.' } ;  
Colorldent(Plnd.:) = 2 ;  
Plnd = Plnd + I ;  

elseif (ProbMat(8,5) = 0 )  & (ProbStatus(8,5) == -2); 
Problem(Plnd, :)  = { 'The Sensor Cone. Process. Board 2 is no longer stuck: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board n o  longer have the same count rate' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + 1 ;  

elseif (ProbMat(9,5) == 2) & (ProbStatus(9,5) -= O); 
Problem(Plnd, :)  = { 'The Sensor Cone. Process. Board 3 is stuck: ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = {'All sensor corresponding to  the board have same count rate for  5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(9,5) = 0) & (ProbStatus(9,5) == -2); 
Problem(Plnd, :)  = { 'The Sensor Cone. Process. Board 3 is no longer stuck: ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = { 'The sensors corresponding t o  the board n o  longer have the same count rate' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat( I0,5) == 2 )  & (ProbStatus( I 0,5) -= 0); 
Problem(Plnd, :)  = {'The Sensor Cone. Process. Board 4 is stuck: ' num2str(ProbMat( I 0, I :2)) } ;  
Logic(Plnd,:) = {'All sensor corresponding to the board have same count rate for  5 cons. obs. ' } ;  
Colorldent(Plnd, :)  = 2 ;  
Plnd = Plnd + I ;  

elseif (ProbMat( I 0,5) = 0) & (ProbStatus( I 0,5) = -2); 
Problem(Plnd,:) = { 'The Sensor Cone. Process. Board 4 is no longer stuck: ' num2str(ProbMat( I 0, I  :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding t o  the board n o  longer have the same count rate' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  

elsei fany(ProbMat( I 1 :30,5)) I any(ProbStatus( l 1 :30,5)) 
for k =  I :20 

if (ProbMat(k+ l0,5) = 2) & (ProbStatus(k+ l 0,5) -= 0) 
Problem(Plnd,:) = {'The RADSiP sensor is stuck: ' num2str(ProbMat( I O+k, I :3)) } ;  
Logic(Plnd,: )  = {'The sensor had the same count rate for 5 cons. obs.' } ;  
Colorldent(Plnd,:) = 2 ;  
Plnd = Plnd + I ;  

end 
if (ProbMat(k+ l 0,5) = 0) & (ProbStatus(k+ 10,5) = -2) 

Problem(Plnd,:) = {'The RADSiP sensor is no longer stuck: ' num2str(ProbMat( I 0+k, I :3)) } ;  
Logic(Plnd,:) = {'The sensor no  longer had the same count rate' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

end 
end 

end 
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Loose Wirelnf erence Function 

This function acts as a sub inference engine for the detection of loose and damage wire 

connections of CA VIS components. 

function [Problem,Logic,Colorldent,Plnd] = LooseWirelnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
¾LooseWirelnference - Inference Engine for the loose wire sensors 
% Written by Joseph Bowling 
% 1 1 / 1 3/03 
if (ProbMat(3,6) = 2) & (ProbStatus(3,6) -= 0); 

Problem(Plnd, :) = {'The PCUD has a loose wire conn. :  ' num2str(ProbMat(3, I )) } ;  
Logic(Plnd, :) = { 'Count rate variance inc. for  a l l  sensors corresponding to the PCDU' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(3,6) = I )  & (ProbStatus(3,6) -= 0); 
Problem(Plnd, :) = {'Warning: The PCUD may have a loose wire conn. : ' num2str(ProbMat(3, l )) } ;  
Logic(Plnd, :) = {'Count rate variance inc. for  all sensors corresponding to the PCDU' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(3,6) = 0) & ((ProbStatus(3,6) == - 1  )l(ProbStatus(3,6) == -2)); 
Problem(Plnd,:) = {'The PCUD no longer has a loose wire conn. : ' num2str(ProbMat(3, I )) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the PCDU no longer have a count rate variance inc . ' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat{4,6) = 2 )  & (ProbStatus(4,6) -= 0); 
Problem(Plnd,:) = fThe Sensor Cone. has a loose wire conn.: ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd, :) = {'Count rate variance inc. for  all sensors corresponding to the Sen. Cone . ' } ;  
Colorldent(Plnd,: )  = 2;  
Plnd = Plnd + I ;  

elseif (ProbMat(4,6) = I )  & (ProbStatus(4,6) -= 0); 
Problem(Plnd, :) = {'Warning: The Sensor Cone. may have a loose wire conn. : ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd, :) = {'Count rate variance inc . fo r  all sensors corresponding to the Sen. Cone.' } ;  
Colorldent(Plnd, :) = I ;  
Plnd = Plnd + I ;  

elseif(ProbMat(4,6) = 0) & ((ProbStatus(4,6) == - l )l(ProbStatus(4,6) = -2)); 
Problem(Plnd, :) = {'The Sensor Cone. no longer has a loose wire conn. : ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd, :) = {'The sensors corresponding to the Sen. Cone. no longer have a count rate variance inc.' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat{5,6) = 2 )  & (ProbStatus(5,6) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board I has a loose wire conn.: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2 ;  
Plnd = Plnd + I ;  

elseif (ProbMat{5,6) = I )  & (ProbStatus(5,6) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Cone. Comm. Board I may have a loose wire conn. : ' num2str(ProbMat(5, l :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(5,6) = 0) & ((ProbStatus(5,6) == - 1  )l(ProbStatus(5,6) == -2)); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board I no longer has a loose wire conn . :  ' num2str(ProbMat(5, I :2))} ; 
Logic(Plnd, :) = { 'The sensors corresponding to the board no longer have a count rate variance inc.' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + I ;  

elseif (ProbMat(6,6) = 2 )  & (ProbStatus(6,6) -= 0); 
Problem(Plnd, :) = {'The Sensor Cone. Comm. Board 2 has a loose wire conn.: ' num2str(ProbMat(6, l :2)) } ;  
Logic(Plnd, : )  = {'Count rate variance inc. for  a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(6,6) = I )  & (ProbStatus(6,6) -= 0); 
Problem(Plnd, :) = {'Warning: The Sensor Cone. Comm. Board 2 may have a loose wire conn. : ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd,:) = { 'Count rate variance inc .  for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
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Plnd = Plnd + I ;  
elseif (ProbMat(6,6) = 0) & ((ProbStatus(6,6) == - 1  )l(ProbStatus(6,6) == -2)); 

Problem(Plnd,: )  = ('The Sensor Cone. Comm. Board 2 no longer has a loose wire conn. :  ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no  longer have a count rate variance inc.' } ;  
Colorldent(Plnd,: )  = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(7,6) = 2 )  & (ProbStatus(7,6) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board I has a loose wire conn.: ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(7,6) = I )  & (ProbStatus(7,6) -= 0); 
Problem(Plnd, :) = {'Warning: The Sensor Process Board I may have a loose wire conn. : ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(7,6) = 0 )  & ((ProbStatus(7,6) = - 1  )l(ProbStatus(7,6) == -2)); 
Problem(Plnd,:) = {'The Sensor Process Board I no longer has a loose wire conn.: ' num2str(ProbMat(7, I :2)) } ;  
Logic(Plnd, :) = { 'The sensors corresponding to the board no longer have a count rate variance inc.' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(8,6) = 2 )  & (ProbStatus(8,6) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 2 has a loose wire conn. : ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,: )  = {'Count rate variance inc. for  all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(8,6) = I )  & (ProbStatus(8,6) -= 0); 
Problem(Plnd, :) = {'Warning: The Sensor Process Board 2 may have a loose wire conn.: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd, :) = ( 'Count rate variance inc. for all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat(8,6) = 0) & ((ProbStatus(8,6) = - I  )l(ProbStatus(8,6) == -2)); 
Problem(Plnd,:) = {'The Sensor Process Board 2 no longer has a loose wire conn.: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'The sensors corresponding to the board no longer have a count rate variance inc.' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(9,6) = 2 )  & (ProbStatus(9,6) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 3 has a loose wire conn. : ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = { 'Count rate variance inc. for all sensors corresponding to the board'}; 
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(9,6) = I )  & (ProbStatus(9,6) -= 0); 
Problem(Plnd,:) = {'Warning: The Sensor Process Board 3 may have a loose wire conn. :  ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elsei f (ProbMat(9 ,6) = 0)  & ( (ProbStatus(9 ,6) = - 1  )l(ProbStatus(9 ,6) == -2) ); 
Problem(Plnd,:) = ('The Sensor Process Board 3 no longer has a loose wire conn. : ' num2str(ProbMat(9, I :2)) } ; 
Logic(Plnd,:) = {'The sensors corresponding to the board no longer have a count rate variance inc.' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat( l0,6) == 2 )  & (ProbStatus( I 0,6) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 4 has a loose wire conn. : ' num2str(ProbMat( 10, l :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for  all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = 2 ;  
Plnd = Plnd + I ;  

elseif (ProbMat( I 0,6) == I )  & (ProbStatus( I 0,6) -= 0); 
Problem(Plnd,:) = ('Warning: The Sensor Process Board 4 may have a loose wire conn. : ' num2str(ProbMat( I 0, I :2)) } ;  
Logic(Plnd,:) = {'Count rate variance inc. for a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

elseif (ProbMat( I 0,6) == 0)  & ((ProbStatus( I 0,6) = - l )l(ProbStatus( I 0,6) = -2)); 
Problem(Plnd,:) = {'The Sensor Process Board 4 no longer has a loose wire conn.: ' num2str(ProbMat( I 0, I :2)) } ;  
Logic(Plnd,:) = { 'The sensors corresponding to the board no longer have a count rate variance inc.' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

elseif any(ProbMat( I I :30,6)) I any(ProbStatus( l l :30,6)) 
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for k =  1 :20 
if (ProbMat(k+ l 0,6) = 2) & (ProbStatus(k+ I 0,6) -= 0) 

Problem(Plnd,:)  = {'The RADSiP sensor has a loose wire conn. :  ' num2str(ProbMat( I 0+k, I :3)) } ;  
Logic(Plnd,:) = { 'Count rate variance inc. for the sensor'} ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

end 
if(ProbMat(k+ I0,6) = 1 )  & (ProbStatus(k+ l 0,6) -= 0) 

Problem(Plnd,:) = {'Warning: The RADSiP sensor may have a loose wire conn . : ' num2str(ProbMat( I 0+k, l :3)) } ;  
Logic(Plnd, :)  = {'Count rate variance inc. for the sensors' } :  
Colorldent(Plnd,:) = l ;  
Plnd = Plnd + l ;  

end 
if(ProbMat(k+ l0,6) = 0) & ((ProbStatus(k+ l 0,6) = - l )l(ProbStatus(k+ l 0,6) == -2)); 

Problem(Plnd,:) = {'The RADSiP sensor no longer has a loose wire conn. : ' nurn2str(ProbMat( I 0+k, I :3)) } ;  
Logic(Plnd,:) = {'The sensor n o  longer has a count rate variance inc.' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

end 
end 

end 

Unpluggedlnference Function 

This function acts as a sub inference engine for the detection of unplugged CA VIS 

components. 

function [Problem,Logic,Colorldent,Plnd] = Unpluggedlnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
%Unplugged Inference - Inference Engine for unplugged component failure 
% Written by Joseph Bowling 
% 1 1/ 1 3/03 
if (ProbMat(3,7) == 2) & (ProbStatus(3,7) -= 0); 

Problem(Plnd,:) = {'The PCUD has been unplugged: ' num2str(ProbMat(3 , I )) } ;  
Logic(Plnd,:) = {'The communication i s  lost for all sensors corresponding to the PCDU' } ;  
Colorldent(Plnd, :)  = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(3,7) = 0 )  & (ProbStatus(3,7) == -2); 
Problem(Plnd,:) = {'The PCUD is no longer unplugged: ' num2str(ProbMat(3, I )) } ;  
Logic(Plnd, : )  = {'The communication has been restored for all sensors corresponding to the PCDU'} ; 
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + l ;  

elseif (ProbMat(4,7) = 2 )  & (ProbStatus(4,7) -= 0): 
Problem(Plnd, :) = {'The Sensor Cone. has been unplugged: ' num2str(ProbMat(4, I :2)) } ;  
Logic(Plnd,:) = {'The communication is lost for all sensors corresponding to the Sen. Cone. ' } ;  
Colorldent(Plnd,: )  = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(4,7) = 0) & (ProbStatus(4,7) = -2); 
Problem(Plnd,:) = {'The Sensor Cone. is no longer unplugged: ' num2str(ProbMat(4, 1 :2)) } ;  
Logic(Plnd, : )  = {'The communication has been restored fo r  all sensors corresponding t o  the Sen. Cone .' } ;  
Colorldent(Plnd, : )  = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(S,7) = 2) & (ProbStatus(S,7) -= 0); 
Problem(Plnd, :) = {'The Sensor Cone. Comm. Board 1 has been unplugged: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd, :) = {'The communication i s  lost for all sensors corresponding to the board' } ;  
Colorldent(Plnd, :)  = 2; 
Plnd = Plnd + l ;  

elsei f (ProbMat(S, 7 )  = 0) & (ProbStatus(S, 7 )  == -2); 
Problem(Plnd, :) = {'The Sensor Cone. Comm. Board I is no longer unplugged: ' num2str(ProbMat(5, I :2)) } ;  
Logic(Plnd,:) = {'The communication has been restored for all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = 3; 
Plnd = Plnd + I ;  
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elseif (ProbMat(6,7) = 2) & (ProbStatus(6,7) -= 0); 
Problem(Plnd, :) = {'The Sensor Cone. Comm. Board 2 has been unplugged: ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd,:) = {'The communication i s  lost for all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(6,7) = 0) & (ProbStatus(6,7) == -2); 
Problem(Plnd,:) = {'The Sensor Cone. Comm. Board 2 is no longer unplugged: ' num2str(ProbMat(6, I :2)) } ;  
Logic(Plnd,:) = {'The communication has been restored for  all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = 3;  
Plnd = Plnd + I ;  

elseif (ProbMat(7,7) = 2 )  & (ProbStatus(7,7) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 1 has been unplugged: ' num2str(ProbMat(7, 1 :2)) } ;  
Logic(Plnd,:) = {'The communication is  lost for a l l  sensors corresponding to the board' } ;  
Colorfdent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(7,7) = 0) & (ProbStatus(7,7) == -2); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board I is no longer unplugged: ' num2str(ProbMat(7, 1 :2)) } ;  
Logic(Plnd,:) = {'The communication has been restored for all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 3 ;  
Plnd = Plnd + l ;  

elseif (ProbMat(8,7) = 2 )  & (ProbStatus(8,7) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 2 has been unplugged: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'The communication is lost for all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(8,7) = 0) & (ProbStatus(8,7) == -2); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 2 is no longer unplugged: ' num2str(ProbMat(8, I :2)) } ;  
Logic(Plnd,:) = {'The communication has been restored for all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

elseif (ProbMat(9,7) = 2 )  & (ProbStatus(9,7) -= 0); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 3 has been unplugged: ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = {'The communication i s  lost for a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif (ProbMat(9,7) = 0) & (ProbStatus(9,7) = -2); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 3 is no longer unplugged: ' num2str(ProbMat(9, I :2)) } ;  
Logic(Plnd,:) = {'The communication has been restored for  all sensors corresponding to the board' } ;  
Colorldent(Plnd, :) = 3 ;  
Plnd = Plnd + I ;  

elseif (ProbMat( I 0,7) == 2) & (ProbStatus( I 0,7) -= O); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 4 has been unplugged: ' num2str(ProbMat( I 0, 1 :2)) } ;  
Logic(Plnd,:) = {'The communication is  lost for a l l  sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

elseif(ProbMat( I 0,7) = 0) & (ProbStatus( l 0,7) == -2); 
Problem(Plnd,:) = {'The Sensor Cone. Process. Board 4 is no longer unplugged: ' num2str(ProbMat( I 0, 1 :2))} ; 
Logic(Plnd,:) = {'The communication has been restored for all sensors corresponding to the board' } ;  
Colorldent(Plnd,:) = 3;  
Plnd = Plnd + I ;  

end 

SNMRemovelnference Function 

This function acts as a sub inference engine for the detection of the removal of SNM 

from the CA VIS system. 

function [Problem,Logic,Colorldent,Plnd) = SNMRemovelnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
%SNMRemovelnference - Inference Engine for the removal of SNM 
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% Written by Joseph Bowling 
% 1 1 / 1 3/03 
for k =  I :20 

if(ProbMat(k+ I 0,7) == 2) & (ProbStatus(k+ I 0,7) -= 0) 
Problem(Plnd,:) = {'Possible removal of SNM at : ' num2str(ProbMat( I O+k, I :3)) } ;  
Logic(Plnd, :)  = {'The sensor has experienced a mean sh ift down in  count rate' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

end 
if (ProbMat(k+ 1 0,7) == I )  & (ProbStatus(k+ 1 0,7) -= 0) 

Problem(Plnd,:) = {'Warning: The SNM may have been removed: ' num2str(ProbMat( l o+k, I :3)) } ;  
Logic(Plnd, :) = {'The sensor has experienced a mean shift down i n  count rate' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

end 
if (ProbMat(k+ I 0,7) == 0) & ((ProbStatus(k+ 1 0,7) = - 1 )  I (ProbStatus(k+ I 0,7) == -2)) 

Problem(Plnd,:) = {'The SNM removal state no longer exists: ' num2str(ProbMat( l o+k, I :3)) } ;  
Logic(Plnd, :) = {'The sensor i s  no longer experiencing a mean shift down i n  count rate' } ; 
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

end 
end 

DriftSPRTinference Function 

This function acts as a sub inference engine for the detection of drifting RADSiP 

radiation sensors. 

function [Problem,Logic,Colorldent,Plnd] = DriftSPRTlnference(ProbMat,ProbStatus,Problem,Logic,Colorldent,Plnd); 
%DriftSPRTinference - Inference Engine for drifting sensors by SPRT 
% Written by Joseph Bowling 
% I 1 / 1 3/03 
for k =  I :20 

if  (ProbMat(k+ I 0,9) == 2) & (ProbStatus(k+ 1 0,9) -= 0) & (max(ProbMat(k+ 1 0,4 :7))=-0); 
Problem(Plnd,:) = {'The RADSiP sensor is drifting: ' num2str(ProbMat( I o+k, I :3)) } ;  
Logic(Plnd,:) = {'The sensors i s  experiencing SPRT alarms' } ;  
Colorldent(Plnd,:) = 2; 
Plnd = Plnd + I ;  

end 
if(ProbMat(k+ I 0,9) == I) & (ProbStatus(k+I 0,9) ---= 0) & (max(ProbMat(k+ I 0,4:7))==0); 

Problem(Plnd, :) = {'Warning: The RADSiP sensor may be drifting: ' num2str(ProbMat( I O+k, I :3)) } ;  
Logic(Plnd,:) = {'The sensors i s  experiencing SPRT alarms' } ;  
Colorldent(Plnd,:) = I ;  
Plnd = Plnd + I ;  

end 
if (ProbMat(k+ J 0,9) == 0) & ((ProbStatus(k+ I 0,9)==-1 )l(ProbStatus(k+ I 0,9) == -2)) & (max(ProbMat(k+ I 0,4:7))==0); 

Problem(Plnd, :) = {'The RADSiP sensor is no longer drifting: ' num2str(ProbMat( I o+k, I :3)) } ;  
Logic(Plnd,:) = {'The sensors i s  no longer experiencing SPR T alarms'} ; 
Colorldent(Plnd,:) = 3; 
Plnd = Plnd + I ;  

end 
end 
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ExcelNew Function 

This function acts as a communication module between the CA VIS monitoring system 

and the EXCEL database. 

function [ PEx Ind] = Excel ESNew( Problem, Logic, Colorldent, H, PEx lnd,ch 7 ,index); 
%ExcelESNew - script that writes the problem to the excel database. 
% Written by Joseph Bowling 
% 1 1 - 1 3-03 
for m = I :length(Problem(:, I )); 

PExlnd = PExlnd + I ;  
R = num2str(PEx ind); 
TimePos = ('r' R 'c 1 1 ; 
IndPos = ['r' R 'c2'); 
ProPos = ['r' R 'c31; 
LogPos = ['r' R 'c41; 
¾ResPos = ('r' R 'c5']; 
ColPos = ['r' R 'c6'); 
ProbChar = char(Problem(m,:)); 
LogChar = char(Logic(m,:)); 
%ResChar = char(Response(m, :)); 
re = ddepoke(ch7,TimePos,H); 
re = ddepoke(ch7, IndPos,index); 
re = ddepoke(ch7,ProPos,ProbChar'); 
re = ddepoke(ch7,LogPos,LogChar'); 
%re = ddepoke(ch7,ResPos,LogChar'); 
re = ddepoke(ch7,ColPos,Colorident(m,:)); 

end 

RAMM Code 

This script initiates and runs a demonstration of the RAMM. 

%NeighborRes - Script file that runs the neighborhood system using the 
%residual of the sensor. 
% Written by Joseph Bowling 
% 7/2 1 /03 
clear all; 
%Define the Warehouse 
VaultRow = 4; 
VaultCol = 5; 
VauitHeight = input('Enter the height the concentrators are stacked to: '); 
WareX = input('Enter the number of vaults (x coordinate) in the warehouse: '); 
WareY = input('Enter the number of vaults (y coordinate) in the warehouse: '); 
%Create the Sensor Space 
[Space] = FabricateSen(VaultRow, VaultCoI, VaultHeight, WareX, Ware Y); 
%Create the radiation signal 
time = input('Enter the time length of the demo: '); 
[t,mu l ]  = FabricateSignal(VaultRow, VaultCol,VaultHeight,WareX,WareY ,time); 
%Define the fault to induce in the warehouse 
choice = input('Simulate a source of mean shift up in the warehouse: I :Source, 2 :Crash Spike: '); 
if choice = I 

faultindex = input('Enter the index the external source appears in the warehouse: '); 
source = input('Enter the x and y coordinate of the source in sensor units [x y z]: '); 
[tex] = extsource(time); 
%Define the parameters for the moving source 
XS = [ I ;VaultRow*WareX];XY = [ I  ;VaultCol*WareY]; 
[centerspace] = centroid([XS XY]); 
Arrive = 0; 

end 
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if choice = 2 
faultindex = input('Enter the index the crash occurs in the warehouse: '); 
Crash = input('Enter the SC vault stack the crash occurred in [WareX WareY]: '); 
if(Crash( I , I )>WareX) I (Crash( l ,2)>WareY) 

error('Spike is outside dimension of Warehouse'); 
end 
A =  (Crash(:, I )  - I )  • VaultRow + I ;  
B = Crash( :, ) ) • VaultRow; 
C = (Crash(:,2) - 1 ) * VaultCol + I ;  
D = Crash(:,2) • VaultCol; 
Ind = I ;  

end 
%Kernel Smoothing Parameters 
width = input('Enter the Kernel Smoothing Width: '); 
Vresolution = input('Enter the vertical resolution of the Kernel Smoothing '); 
Hresolution = 1 ;  %input('Enter the resolution of the Kernel Smoothing'); 
[gauss. Interest] = LoadGauss(VaultRow, VaultCol, WareX, WareY, VaultHeight, Vresolution,Hresolution,width); 
%Define plotting parameters and loop 
[ts ty] = size(t); 
x = [ 1 : 1 :VaultRow*WareX]; 
y = [ 1 : 1 :VaultCol*WareY]; 
preMike = O; 
PreNeigh I = zeros(VaultRow*WareX*VaultCol*WareY*(VaultHeight*Vresolution-(Vresolution-1 )), I ); 
PreNeigh2 = zeros(VaultRow•WareX*VaultCol*WareY*(VaultHeight*Vresolution-(Vresolution- 1 )), I ); 
PreNeigh3 = zeros(VaultRow*WareX*VaultCol*WareY*(VaultHeight*Vresolution-(Vresolution- 1 )), I ); 
PreNeigh4 = zeros(VaultRow*WareX*VaultCol*WareY*(VaultHeight*Vresolution-(Vresolution- 1 )), I ); 
PreNeigh5 = zeros(VaultRow*WareX*VaultCol*WareY*(VaultHeight*Vresolution-(Vresolution- 1 )), 1 ); 
Sara = O; 
for i = I :ty 

Sara = Sara + I ;  
%Insert count rate i n  Space 4 
Space(:,4) = t(:,i); 
%Insert Faults into Space 
if (Sara >= faultindex) & (choice = I ); 

%Add external noise source to the signal 
source( :,4) = tex(:,i); 
[Space] = addext(Space,source); 

end 
if (Sara == faultindex) & (choice == 2); 

%Add spike to faulted vaults 
for k = I :VaultHeight; 

CC = C- 1 ;  
forj = C:D  

CC = CC +  I ;  
AA = A; 
for j = A:B 

F = ((k-1 )*VaultRow*WareX*VaultCol*WareY) + ((CC- I )*VaultRow•WareX) + AA; 
G(lnd,:) = F; 
Ind = Ind + I ;  
AA = AA +  I ;  

end 
end 

end 
[Gx Gy]=size(G); 
for k = 1 :Gx 

Gcount = G(k,:); 
Space(Gcount,4) = 3*Space(Gcount,4); 

end 
end 
%Calculate the residual 
Space(:,4) = Space(:,4) - mu l ;  
%Kernel Smoothing 
[SmoothSpace] = KernalSmooth(Space,gauss, VaultRow, VaultCol, WareX, WareY, VaultHeight, Vresolution,Interest); 
%Plot the Neighborhood 
figure( ! )  
AlphaPlot(SmoothSpace, VaultRow, VaultCol, WareX, WareY, Vault Height, Vresolution,[O 20]); 
zlabel('Sensor in Z'); 
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xlabel('Sensor Space in X');ylabel('Sensor Space in Y'); 
title('Neighborhood Score'); 
drawnow; 
%Plot the UnSmoothed Data 
figure(4) 
AlphaPlot(Space, VaultRow, VaultCol, WareX, WareY, VaultHeight, 1 ,[0 20}); 
zlabel('Sensor in Z'); 
xlabel('Sensor Space in X');ylabel('Sensor Space in Y'); 
title('UnSmoothed Data - Residuals'); 
drawnow; 
%Record largest residuals. 
Mike = max(Space( :,4)); 
if Mike > preMike 

figure(2); 
AlphaPlot(SmoothSpace, VaultRow, VaultCol, WareX, WareY, VaultHeight, Vresolution,[0 20]); 
%axis([- 1 VaultRow*WareX+ I - 1  VaultCol*WareY+ l - 1 00 400]); 
title('Maximum of Neighborhood'); 
zlabel('Sensor in Y'); 
xlabel('Sensor Space in X');ylabel('Sensor Space in Y'); 
preMike = Mike; 
drawnow; 

end 
%Plot Tails 
Tails = SmoothSpace; 
Tails(:,4) = (SmoothSpace(:,4)+(exp(- I /3))*PreNeigh I +(exp(-2/3 ))*PreNeigh2+(exp(-3/3))*PreNeigh3+(exp(-

4/3 ))*PreNeigh4+( exp(-5/3 ))*PreNeighS)./2.0503; 
figure(3); 
AlphaPlot(Tails, Vault Row, VaultCol, WareX, WareY, VaultHeight, Vresolution,[0 20]); 
title('Tail Plot of Neighborhood Score'); 
zlabel('Sensor in Y'); 
xlabel('Sensor Space in X');ylabel('Sensor Space in Y'); 
drawnow; 
PreNeigh5 = PreNeigh4; 
PreNeigh4 = PreNeigh3; 
PreNeigh3 = PreNeigh2; 
PreNeigh2 = Pre Neigh I ;  
PreNeigh l = SmoothSpace(:,4); 
%Find the maximum of the neighborhood space 
if ( (Sara<faultindex )&( choice== I )) I ( (Sara-=faultindex )&( choice==2)) 

SourcelocPre(Sara,:) = [0 0 0]; 
elsei f ( ( (Sara>=faultindex )&( choice= I )) I ((Sara==faultindex )&( choice==2 ))); 

ind = find(max(SmoothSpace(:,4)) == SmoothSpace(:,4)); 
A = SmoothSpace(ind, I :3); 
%Chart position of source prediction location 
SourcelocPre(Sara,:) = [A]; 
if choice == l ;  

Error(Sara, : )  = source(: ,  I :3)-A; 
end 
if  choice = 2; 

Crash Pre = [ceil(center( l , 1  )/VaultRow) ceil(center( l ,2)/VaultCol)]; 
Error = Crash - Crash Pre; 

end 
end 
%Chart position of source location 
if choice = I ;  

Sourceloc(Sara, :) = [source( I ,  I :3)]; 
end 
%Alter the coordinates of the source 
if (choice = I )  & (Sara >= faultindex); 

[source.Arrive] = Alter(source,centerspace,Arrive,WareX,WareY,VaultRow,VaultCol,VaultHeight); 
end 
if Sara = I 

pause 
end 

end 
%Plot position of source and prediction of source location 
if choice = I 
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for i = faultindex :Sara 
figure(5); 
Brian = plot3(SourceLoc(i, I ),SourceLoc(i,2),SourceLoc(i,3),'r +');hold 

on;plot3(SourceLocPre(i, 1 ),SourceLocPre(i,2),SourceLocPre(i,3),'b 0') 
title('Location of Source'); 
zlabel('Neighborhood Score'); 
xlabel('Sensor Space in X');ylabel('Sensor Space in Y'); 
legend('Source Location','Source Location Prediction',0); 
grid on; 
axis([- 1 VaultRow*WareX+l -1 VaultCol*WareY+ l O VaultHeight+ I J); 
set(Brian); 
drawnow; 
pause(.2) 
cla 

end 
%plot the error in the prediction 
figure(6) 
ErrorTotal = sqrt(Error( :, 1 )."2+Error( :,2)."2+Error( :,3)."2); 
plot(ErrorTotal(faultindex:Sara,:));xlabel('Time Step');ylabel('Error Value (Sensor Space Units)'); 
title('Error in Prediction of Neighborhood System'); 

end 
%Error in Crash fault 
if choice = 2 

ErrorTotal = sqrt(Error( :, I )."2+Error( :,2)."2); 
fprintt'('\nA crash spike occurred in Sensor Concentrator Vault %g %g \n',CrashPre( 1, I ),Crash Pre( 1 ,2)); 
fprintt'('The actual spike occurred in Sensor Concentrator Vault %g %g \n',Crash( I, I ),Crash( 1 ,2 )); 
fprintt'('The error in the prediction is %g in Vault Units',ErrorTotal); 

end 

FabricateSen Function 

This function creates the three dimensional array and the RADSiP sensor information for 

the RAMM. 

function [Space] = FabricateSen(VaultRow, VaultCol, VaultHeight, WareX, WareY) 
%Fabricate - Fabricates the data for the neighborhood function. 
% Written by Joseph Bowling 
% VaultRow - The number of rows in the vault 
% VaultCol - The number of columns in the vault 
% VaultHeight - The height the vaults are stacked to 
% VaultX - The number of vaults x coordinate 
% VaultY - The number of vaults y coordinate 
% 
% [Space] = Fabricate(VaultRow,VaultCol,VaultHeight,VaultX,VaultY); 
%Create the Sensor Space 
index = l ;  
for k =  I :VaultHeight %Change the I to a zero to make ground 0 

for j = l :VaultCol*WareY 
for i = l  :VaultRow*WareX 

Count = [i j k OJ; 
Space(index,:) = Count; 
index = index + I ;  

end 
end 

end 
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FabricateSignal Function 

This function creates the RADSiP radiation signal for use in the RAMM. 

function [t,mu I ] = FabricateSignal(VaultRow,VaultCol,VaultHeight,WareX, WareY,time) 
%Fabricate - Fabricates the data for the neighborhood function. 
% Written by Joseph Bowling 
% VaultRow - The number of rows in the vault 
% VaultCol - The number of columns in the vault 
% VaultHeight - The height the vaults are stacked to 
% VaultX - The number of vaults x coordinate 
% VaultY - The number of vaults y coordinate 
% 
% [Space] = Fabricate(VaultRow, VaultCol, VaultHeight, VaultX, VaultY); 
%Fabricate the data 
mu I ( I :VaultRow*VaultCol*VaultHeight*WareX*WareY) = round( I OO*rand( I ,  VaultRow*VaultCol*VaultHeight*WareX*WareY)) 
+ 20; 
sig( l :VaultRow*VaultCol*VaultHeight*WareX*WareY) = sqrt(mu l ); 
for index = I :time 

randy = randn( I ,  VaultRow*VaultCol*VaultHeight*WareX*WareY); 
data = round( mu I ( I : VaultRow*VaultCol *VaultHeight*WareX • Ware Y) + sig. *randy); 
t(index, :) = data; 

end 
t = t'; 
mu ! = mu l '; 

Extsource Function 

This function creates the external source abnormality that the RAMM demonstration will 

track. 

function [tex] = extsource(time); 
o/oextsource - Function that creates the external source to add to the fabricated signal 
%in the neighborhood system. 
%Fabricate the external source 
exmu 1 ( 1 :  I ) = round{ I OO*rand( l , I )) +  40; 
exsig( I :  I )  = sqrt( exmu I ); 
for index = I :time 

randy = randn( I , I ); 
data = round( exmu I ( I :  I )  + exsig. *randy); 
tex(index,:) = data; 

end 
tex = tex'; 

LoadGauss Function 

This function creates and loads the kernel function information necessary for the kernel 

smoothing of the RADSiP radiation signal. 

function [gauss,lnterest] = LoadGauss(VaultRow, VaultCol, WareX, Ware Y, VaultHeight, Vresolution,Hresolution, width); 
%LoadGauss - Loads of creates the gaussian data for the Neighborhood System 
% distance - the distance from each point to each other. 
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% gauss - gaussian value of distance with width 
% VaultRow - The number of rows in the vault 
% VaultCol - The number of columns in the vault 
% VaultHeight - The height the vaults are stacked to 
% WareX - The number of vaults x coordinate 
% WareY - The number of vaults y coordinate 
% h - smoothing parameter 
% Vresolution - Vertical resolution of the smoothing (Number of Nodes) 
% Hresolution - Horizontal resolution of the smoothing (Number of Nodes) 
% 
% Written by Joseph Bowling, August 6,2003 
if (VaultRow==4)&(VaultCol=5)&(WareX-=4)&(WareY==4)&(VaultHeight==3)&(Vresolution== l )&(width=2.5) 

load gauss-4-4-3-2_5 
elsei f (VaultRow==4 )&(VaultCol==5)&(WareX==4 )&(Ware Y==4 )&(VaultHeight==3 )&(Vresolution== 1 )&( width=3) 

load gauss-4-4-3-3 
elseif(VaultRow--=4)&(VaultCol==5)&(WareX==5)&(WareY==5)&(VaultHeight=2)&(Vresolution== l )&(width=3)  

load gauss-5-5-2-3 
elseif (VaultRow==4 )&(VaultCol==5)&(WareX==3 )&(Ware Y=3 )&(VaultHeight=2)&(Vresolution= I )&(width=5) 

load gauss-3-3-2-5 
elsei f (VaultRow==4 )&(VaultCol==5)&(WareX--4 )&(Ware Y -=4 )&(VaultHeight=5)&(Vresolution== I )&( width=3 .5) 

load gauss-4-4-5-3 _5 
elseif (VaultRow==4)&(VaultCol==5)&(WareX=3)&(WareY=3)&(VaultHeight= l 5)&(Vresolution= l )&(width==4) 

load gauss-3-3- 1 5-4 
elseif (VaultRow==4 )&(VaultCol==5)&(WareX==4)&(WareY==4)&(VaultHeight= I )&(Vresolution== I )&(width=4) 

load gauss-4-4- l -4 
elseif (VaultRow==4)&(VaultCo1==5)&(WareX==3)&(WareY==3)&(VaultHeight=2)&(Vresolution= l )&(width=4) 

load gauss-3-3-2-4 
elseif (VaultRow=4 )&(VaultCol=5)&(WareX==2 )&(Ware Y==2)&(VaultHeight=6 )&(Vresolution== 1 )&( width==4) 

load gauss-2-2-6-4 
elsei f (VaultRow==4 )&(VaultCol=5)&(WareX=2 )&(Ware Y==2)&(VaultHeight=6)&(Vresolution== I )&( width=2.5) 

load gauss-2-2-6-2_5 
elseif (VaultRow==4)&(VaultCol==5)&(WareX==2)&(WareY==2)&(VaultHeight=3)&(Vresolution==2)&(width=2.5 )  

load gauss-2-2-3-2_5-2 
elseif (VaultRow==4)&(VaultCol==5)&(WareX=3)&(WareY=3)&(VaultHeight=5)&(Vresolution==2)&(width=2.5)  

load gauss-3-3-5-2_5-2 
elseif (VaultRow==4)&(VaultCo1==5)&(WareX=3)&(WareY==3)&(VaultHeight=6)&(Vresolution== l )&(width=2.5) 

load gauss-3-3-6-2_5 
else 

fprintfl'\n\nThe gauss matrix does not exist for the specified architecture.\n'); 
fprintfl'Please wait will it is being created and saved.\n'); 
filename = input('Enter the gauss data matrix filename (gauss-WareX-WareY-VaultHeight-Width-Vresolution): ','s'); 
fprintfl'Please make the appropriate changes to the function LoadGauss'); 
[ distance,gauss,lnterest] = Distance(VaultRow, VaultCol, WareX, Ware Y, VaultHeight, Vresolution, H resolution, width); 
eval(['save ' filename ' gauss Interest']); 

end 
%Experiment with this to avoid having to enter the gauss matrix name 
%filename = char('gauss',WareXs,'-',WareYs,'-',VaultHeights); 

Addext Function 

This function adds the external radiation source to the radiation signals in the RAMM 

demonstration. 

function [Space] = addext(Space,source); 
o/oaddext - Adds external source to the radiation signal based on the 
%distance from the source to the sensor in question. 
% Written by Joseph Bowling 
% 7/23/03 
%Determine the distance between the source and the sensor in question 
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[spacex spacey] = size(Space); 
index = I ;  
for i = I :spacex 

distance(index,:) = sqrt(sum((source( I ,  I :3)-Space(i, I :3))."2)); 
index = index + I ;  

end 
%Determine the effect the source would have on the sensor at the various 
%distances. 
A =  1 ./((distance(:, I )."2+ I ))*source(:,4); 
%Add the effect of the external source to the existing count rate for the 
%sensor 
Space( :,4) = Space(:,4) + A; 

AlphaPlot Function 

This function creates a transparent three-dimensional plot of the RAMM result. 

function AlphaPlot(SmoothSpace, Vault Row, VaultCol, WareX, WareY, VaultHeight, Vresolution,Caxis); 
¾AlphaPlot - Slice plotting for the Neighborhood System 
% 
% Written By Joseph Bowling 
% Aug 3, 2003 
% 
% SmoothSpace - Smooth Data 
% VaultRow - The number of rows in the vault 
% VaultCol - The number of columns in the vault 
% VaultHeight - The height the vaults are stacked to 
% VaultX - The number of vaults x coordinate 
% VaultY - The number of vaults y coordinate 
% 
% AlphaPlot(SmoothSpace, VaultRow, VaultCol, WareX, WareY, VaultHeight); 
x = SmoothSpace(:, 1 );%Space(:, I ); %SmoothSpace(:, I ); 
y = SmoothSpace(:,2);%Space( :,2); %SmoothSpace(:,2); 
z = SmoothSpace( :,3);%Space(:,3); %SmoothSpace(:,3); 
res = SmoothSpace(:,4);%Space( :,4); %SmoothSpace(:,4); 
dimen = VaultRow•WareX*VaultCol*WareY; 
for i = I :VaultHeight * Vresolution - (Vresolution - I ); 

Count2 = dimen*i-dimen; 
for j = I :VaultRow•WareX 

Count I = Count2; 
Count2 = Count2 + I ;  
Count ! = Count! + I ;  
for k =  I :VaultCot•WareY 

Res(kj,i) = res(Count l ,  I ); 
Count I =  Count! + VaultRow•WareX; 

end 
end 

end 
[x,y.z] = meshgrid( l : I  :VaultRow•WareX, I : I  :VaultCol*WareY, I :  1 /Vresolution:VaultHeight); 
h = slice(x,y,z,Res, I :  I :VaultRow•WareX, I :  I :VaultCol*WareY, I : 1 /Vresolution:VaultHeight); 
%axis([0 16 0 20 0 4]) 
set(h, 'EdgeColor', 'none', 'FaceColor', 'interp' , . . .  

'FaceAlpha','interp'); 
axis([0 VaultRow•WareX 0 VaultCol*WareY 0 max(VaultHeight,VaultCol*WareY/2)]) 
alpha('color'); 
%alpha('color'); 
colormap('NeighColorMap'); 
caxis(Caxis); 
colorbar; 
% VIEW(AZ,EL) 
%alphamap('rampdown') 
%alphamap('increase',. l )  
%colorrnap(hsv) 
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Alter Function 

This function alters the position of the external radiation source in the CA VIS array 

during the RAMM demonstration. 

function [source,Arrive] = Alter(source,centerspace,Arrive, WareX, WareY, Vault Row, VaultCol, VaultHeight); 
%Alter - Alters the coordinates of the source for the NeighMove demo 
% Written by Joseph Bowling 
% source - location of external source in sensor space 

% 
% [source] = Alter(source,centerspace); 
CS = round(centerspace); 
source(:, I :2) = round(source( :, I :2)); 
FFF = rand; 
if (FFF > 0.5) & (source(:,3) -= VaultHeight) 

source(:,3) = source(:,3) + I ;  
end 
if (FFF < 0.5) & (source(:,3) -= I )  

source(:,3) = source(:,3) - I ;  
end 
if Arrive == 0 

Diff = CS - source(:, I :2); 
if Di flt:, I ) > 0 

source(:, I ) = source(:, I ) +  I ;  
elseif Diff(:, I ) < 0 

source(:, I ) = source(:, I )  - I ;  
elseif Diff(:, I ) == 0 

source(: , I ) = source(:, I ); 
end 
if Diff(:,2) > 0 

source(:,2) = source(:,2) + I ;  
elseif Diff(:,2) < 0 

source(:,2) = source(:,2) - 1 ;  
elseif Diff(:,2) == 0 

source(:,2) = source( : ,2); 
end 

end 
if Arrive == I 

source( :, 1 )  = source(:, I ) +  I ;  
source(:,2) = source(:,2); 

end 
if Arrive == 2 

source(:, I ) =  source( :, I )  - I ;  
source(: ,2) = source( :,2) - I ;  

end 
if Arrive = 3 

source(:, I ) =  source(:, l )  - I ;  
source(:,2) = source(:,2) + I ;  

end 
if Arrive == 4 

source(:, I ) = source(:, I ) +  I ;  
source(:,2) = source(:,2) + l ;  

end 
if Arrive == 5 

source(:, I )  = source(:, I ) + I ;  
source( :,2) = source(:,2) - I ;  

end 
if CS == source(:, I :2) 

Arrive = I ;  
end 
if WareX*VaultRow = source(:, I )  

Arrive = 2; 
end 
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if O = source(:,2) 
Arrive = 3; 

end 

if O = source(:, I )  
Arrive = 4; 

end 

if WareY*VaultCol == source( :,2) 
Arrive = 5; 

end 
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